Vanishing lines in generalized Adams spectral sequences are generic
Geometry & topology, Tome 3 (1999) no. 1, pp. 155-165.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that in a generalized Adams spectral sequence, the presence of a vanishing line of fixed slope (at some term of the spectral sequence, with some intercept) is a generic property.

DOI : 10.2140/gt.1999.3.155
Keywords: Adams spectral sequence, vanishing line, generic

Hopkins, M J 1 ; Palmieri, J H 2 ; Smith, J H 3

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2 Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556, USA
3 Department of Mathematics, Purdue University, West Lafayette, Indiana 47907, USA
@article{GT_1999_3_1_a6,
     author = {Hopkins, M J and Palmieri, J H and Smith, J H},
     title = {Vanishing lines in generalized {Adams} spectral sequences are generic},
     journal = {Geometry & topology},
     pages = {155--165},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1999},
     doi = {10.2140/gt.1999.3.155},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.155/}
}
TY  - JOUR
AU  - Hopkins, M J
AU  - Palmieri, J H
AU  - Smith, J H
TI  - Vanishing lines in generalized Adams spectral sequences are generic
JO  - Geometry & topology
PY  - 1999
SP  - 155
EP  - 165
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.155/
DO  - 10.2140/gt.1999.3.155
ID  - GT_1999_3_1_a6
ER  - 
%0 Journal Article
%A Hopkins, M J
%A Palmieri, J H
%A Smith, J H
%T Vanishing lines in generalized Adams spectral sequences are generic
%J Geometry & topology
%D 1999
%P 155-165
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.155/
%R 10.2140/gt.1999.3.155
%F GT_1999_3_1_a6
Hopkins, M J; Palmieri, J H; Smith, J H. Vanishing lines in generalized Adams spectral sequences are generic. Geometry & topology, Tome 3 (1999) no. 1, pp. 155-165. doi : 10.2140/gt.1999.3.155. http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.155/

[1] J F Adams, Stable homotopy and generalised homology, University of Chicago Press (1974)

[2] A K Bousfield, The localization of spectra with respect to homology, Topology 18 (1979) 257

[3] M Hovey, J H Palmieri, N P Strickland, Axiomatic stable homotopy theory, Mem. Amer. Math. Soc. 128 (1997)

[4] M J Hopkins, J H Smith, Nilpotence and stable homotopy theory II, Ann. of Math. $(2)$ 148 (1998) 1

[5] H Miller, C Wilkerson, Vanishing lines for modules over the Steenrod algebra, J. Pure Appl. Algebra 22 (1981) 293

[6] J H Palmieri, Quillen stratification for the Steenrod algebra, Ann. of Math. $(2)$ 149 (1999) 421

[7] J H Palmieri, Stable homotopy over the Steenrod algebra, Mem. Amer. Math. Soc. 151 (2001)

[8] D C Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics 121, Academic Press (1986)

Cité par Sources :