Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that in a generalized Adams spectral sequence, the presence of a vanishing line of fixed slope (at some term of the spectral sequence, with some intercept) is a generic property.
Hopkins, M J 1 ; Palmieri, J H 2 ; Smith, J H 3
@article{GT_1999_3_1_a6, author = {Hopkins, M J and Palmieri, J H and Smith, J H}, title = {Vanishing lines in generalized {Adams} spectral sequences are generic}, journal = {Geometry & topology}, pages = {155--165}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {1999}, doi = {10.2140/gt.1999.3.155}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.155/} }
TY - JOUR AU - Hopkins, M J AU - Palmieri, J H AU - Smith, J H TI - Vanishing lines in generalized Adams spectral sequences are generic JO - Geometry & topology PY - 1999 SP - 155 EP - 165 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.155/ DO - 10.2140/gt.1999.3.155 ID - GT_1999_3_1_a6 ER -
%0 Journal Article %A Hopkins, M J %A Palmieri, J H %A Smith, J H %T Vanishing lines in generalized Adams spectral sequences are generic %J Geometry & topology %D 1999 %P 155-165 %V 3 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.155/ %R 10.2140/gt.1999.3.155 %F GT_1999_3_1_a6
Hopkins, M J; Palmieri, J H; Smith, J H. Vanishing lines in generalized Adams spectral sequences are generic. Geometry & topology, Tome 3 (1999) no. 1, pp. 155-165. doi : 10.2140/gt.1999.3.155. http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.155/
[1] Stable homotopy and generalised homology, University of Chicago Press (1974)
,[2] The localization of spectra with respect to homology, Topology 18 (1979) 257
,[3] Axiomatic stable homotopy theory, Mem. Amer. Math. Soc. 128 (1997)
, , ,[4] Nilpotence and stable homotopy theory II, Ann. of Math. $(2)$ 148 (1998) 1
, ,[5] Vanishing lines for modules over the Steenrod algebra, J. Pure Appl. Algebra 22 (1981) 293
, ,[6] Quillen stratification for the Steenrod algebra, Ann. of Math. $(2)$ 149 (1999) 421
,[7] Stable homotopy over the Steenrod algebra, Mem. Amer. Math. Soc. 151 (2001)
,[8] Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics 121, Academic Press (1986)
,Cité par Sources :