ℝ–covered foliations of hyperbolic 3-manifolds
Geometry & topology, Tome 3 (1999) no. 1, pp. 137-153.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We produce examples of taut foliations of hyperbolic 3–manifolds which are –covered but not uniform — ie the leaf space of the universal cover is , but pairs of leaves are not contained in bounded neighborhoods of each other. This answers in the negative a conjecture of Thurston. We further show that these foliations can be chosen to be C0 close to foliations by closed surfaces. Our construction underscores the importance of the existence of transverse regulating vector fields and cone fields for –covered foliations. Finally, we discuss the effect of perturbing arbitrary –covered foliations.

DOI : 10.2140/gt.1999.3.137
Keywords: $\mathbb{R}$–covered foliations, slitherings, hyperbolic 3–manifolds, transverse geometry

Calegari, Danny 1

1 Department of Mathematics, University of California at Berkeley, Berkeley, California 94720, USA
@article{GT_1999_3_1_a5,
     author = {Calegari, Danny},
     title = {\ensuremath{\mathbb{R}}{\textendash}covered foliations of hyperbolic 3-manifolds},
     journal = {Geometry & topology},
     pages = {137--153},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1999},
     doi = {10.2140/gt.1999.3.137},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.137/}
}
TY  - JOUR
AU  - Calegari, Danny
TI  - ℝ–covered foliations of hyperbolic 3-manifolds
JO  - Geometry & topology
PY  - 1999
SP  - 137
EP  - 153
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.137/
DO  - 10.2140/gt.1999.3.137
ID  - GT_1999_3_1_a5
ER  - 
%0 Journal Article
%A Calegari, Danny
%T ℝ–covered foliations of hyperbolic 3-manifolds
%J Geometry & topology
%D 1999
%P 137-153
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.137/
%R 10.2140/gt.1999.3.137
%F GT_1999_3_1_a5
Calegari, Danny. ℝ–covered foliations of hyperbolic 3-manifolds. Geometry & topology, Tome 3 (1999) no. 1, pp. 137-153. doi : 10.2140/gt.1999.3.137. http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.137/

[1] D Calegari, The geometry of $\mathbb{R}$–covered foliations I,

[2] D Cooper, D D Long, Foliations of some 3–manifolds which fiber over the circle, Proc. Amer. Math. Soc. 126 (1998) 925

[3] S R Fenley, Quasi-isometric foliations, Topology 31 (1992) 667

[4] S Fenley, private communication

[5] C F B Palmeira, Open manifolds foliated by planes, Ann. Math. $(2)$ 107 (1978) 109

[6] A Selberg, On discontinuous groups in higher-dimensional symmetric spaces, from: "Contributions to function theory (internat. Colloq. Function Theory, Bombay, 1960)", Tata Institute of Fundamental Research (1960) 147

[7] W Thurston, Three-manifolds, foliations and circles I,

[8] W Thurston, Three-manifolds, foliations and circles II, preprint

Cité par Sources :