Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The Mahler volume of a centrally symmetric convex body is defined as . Mahler conjectured that this volume is minimized when is a cube. We introduce the bottleneck conjecture, which stipulates that a certain convex body has least volume when is an ellipsoid. If true, the bottleneck conjecture would strengthen the best current lower bound on the Mahler volume due to Bourgain and Milman. We also generalize the bottleneck conjecture in the context of indefinite orthogonal geometry and prove some special cases of the generalization.
Kuperberg, Greg 1
@article{GT_1999_3_1_a4, author = {Kuperberg, Greg}, title = {The bottleneck conjecture}, journal = {Geometry & topology}, pages = {119--135}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {1999}, doi = {10.2140/gt.1999.3.119}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.119/} }
Kuperberg, Greg. The bottleneck conjecture. Geometry & topology, Tome 3 (1999) no. 1, pp. 119-135. doi : 10.2140/gt.1999.3.119. http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.119/
[1] New volume ratio properties for convex symmetric bodies in $\mathbb{R}^n$, Invent. Math. 88 (1987) 319
, ,[2] A low-technology estimate in convex geometry, Internat. Math. Res. Notices (1992) 181
,[3] Invariant convex cones and causality in semisimple Lie algebras and groups, J. Funct. Anal. 43 (1981) 313
,[4] Determination of invariant convex cones in simple Lie algebras, Ark. Mat. 21 (1983) 217
,[5] The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics 94, Cambridge University Press (1989)
,[6] Sur le volume des corps convexes symétriques, from: "Initiation Seminar on Analysis, 20th Year: 1980/1981" (editors G Choquet, M Rogalski, J Saint-Raymond), Publ. Math. Univ. Pierre et Marie Curie 46, Univ. Paris VI (1981)
,Cité par Sources :