The bottleneck conjecture
Geometry & topology, Tome 3 (1999) no. 1, pp. 119-135.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The Mahler volume of a centrally symmetric convex body K is defined as M(K) = (VolK)(VolK). Mahler conjectured that this volume is minimized when K is a cube. We introduce the bottleneck conjecture, which stipulates that a certain convex body K K × K has least volume when K is an ellipsoid. If true, the bottleneck conjecture would strengthen the best current lower bound on the Mahler volume due to Bourgain and Milman. We also generalize the bottleneck conjecture in the context of indefinite orthogonal geometry and prove some special cases of the generalization.

DOI : 10.2140/gt.1999.3.119
Keywords: metric geometry, euclidean geometry, Mahler conjecture, bottleneck conjecture, central symmetry

Kuperberg, Greg 1

1 Department of Mathematics, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
@article{GT_1999_3_1_a4,
     author = {Kuperberg, Greg},
     title = {The bottleneck conjecture},
     journal = {Geometry & topology},
     pages = {119--135},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1999},
     doi = {10.2140/gt.1999.3.119},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.119/}
}
TY  - JOUR
AU  - Kuperberg, Greg
TI  - The bottleneck conjecture
JO  - Geometry & topology
PY  - 1999
SP  - 119
EP  - 135
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.119/
DO  - 10.2140/gt.1999.3.119
ID  - GT_1999_3_1_a4
ER  - 
%0 Journal Article
%A Kuperberg, Greg
%T The bottleneck conjecture
%J Geometry & topology
%D 1999
%P 119-135
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.119/
%R 10.2140/gt.1999.3.119
%F GT_1999_3_1_a4
Kuperberg, Greg. The bottleneck conjecture. Geometry & topology, Tome 3 (1999) no. 1, pp. 119-135. doi : 10.2140/gt.1999.3.119. http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.119/

[1] J Bourgain, V D Milman, New volume ratio properties for convex symmetric bodies in $\mathbb{R}^n$, Invent. Math. 88 (1987) 319

[2] G Kuperberg, A low-technology estimate in convex geometry, Internat. Math. Res. Notices (1992) 181

[3] S M Paneitz, Invariant convex cones and causality in semisimple Lie algebras and groups, J. Funct. Anal. 43 (1981) 313

[4] S M Paneitz, Determination of invariant convex cones in simple Lie algebras, Ark. Mat. 21 (1983) 217

[5] G Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics 94, Cambridge University Press (1989)

[6] J Saint-Raymond, Sur le volume des corps convexes symétriques, from: "Initiation Seminar on Analysis, 20th Year: 1980/1981" (editors G Choquet, M Rogalski, J Saint-Raymond), Publ. Math. Univ. Pierre et Marie Curie 46, Univ. Paris VI (1981)

Cité par Sources :