Embeddings from the point of view of immersion theory : Part II
Geometry & topology, Tome 3 (1999) no. 1, pp. 103-118.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let M and N be smooth manifolds. For an open V M let emb(V,N) be the space of embeddings from V to N. By the results of Goodwillie and Goodwillie–Klein, the cofunctor V emb(V,N) is analytic if dim(N) dim(M) 3. We deduce that its Taylor series converges to it. For details about the Taylor series, see Part I

DOI : 10.2140/gt.1999.3.103
Keywords: Embedding, immersion, calculus of functors

Goodwillie, Thomas G 1 ; Weiss, Michael 2

1 Department of Mathematics, Brown University, Box 1917, Providence, Rhode Island 02912-0001, USA
2 Department of Mathematics, University of Aberdeen, Aberdeen, AB24 3UE, United Kingdom
@article{GT_1999_3_1_a3,
     author = {Goodwillie, Thomas G and Weiss, Michael},
     title = {Embeddings from the point of view of immersion theory : {Part} {II}},
     journal = {Geometry & topology},
     pages = {103--118},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1999},
     doi = {10.2140/gt.1999.3.103},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.103/}
}
TY  - JOUR
AU  - Goodwillie, Thomas G
AU  - Weiss, Michael
TI  - Embeddings from the point of view of immersion theory : Part II
JO  - Geometry & topology
PY  - 1999
SP  - 103
EP  - 118
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.103/
DO  - 10.2140/gt.1999.3.103
ID  - GT_1999_3_1_a3
ER  - 
%0 Journal Article
%A Goodwillie, Thomas G
%A Weiss, Michael
%T Embeddings from the point of view of immersion theory : Part II
%J Geometry & topology
%D 1999
%P 103-118
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.103/
%R 10.2140/gt.1999.3.103
%F GT_1999_3_1_a3
Goodwillie, Thomas G; Weiss, Michael. Embeddings from the point of view of immersion theory : Part II. Geometry & topology, Tome 3 (1999) no. 1, pp. 103-118. doi : 10.2140/gt.1999.3.103. http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.103/

[1] R Bott, On invariants of manifolds, from: "Modern methods in complex analysis (Princeton, NJ, 1992)", Ann. of Math. Stud. 137, Princeton Univ. Press (1995) 29

[2] J P Dax, Étude homotopique des espaces de plongements, Ann. Sci. École Norm. Sup. $(4)$ 5 (1972) 303

[3] T G Goodwillie, Calculus. II. Analytic functors, $K$–Theory 5 (1991/92) 295

[4] T G Goodwillie, A multiple disjunction lemma for smooth concordance embeddings, Mem. Amer. Math. Soc. 86 (1990)

[5] T G Goodwillie, Excision estimates for spaces of homotopy equivalences, preprint (1995)

[6] T G Goodwillie, Excision estimates for spaces of smooth embeddings, preprint (1998)

[7] T G Goodwillie, J Klein, Excision estimates for spaces of Poincaré embeddings, in preparation

[8] A Haefliger, Plongements différentiables dans le domaine stable, Comment. Math. Helv. 37 (1962/1963) 155

[9] A Haefliger, M W Hirsch, Immersions in the stable range, Ann. of Math. $(2)$ 75 (1962) 231

[10] M Kontsevich, Feynman diagrams and low-dimensional topology, from: "First European Congress of Mathematics, Vol. II (Paris, 1992)", Progr. Math. 120, Birkhäuser (1994) 97

[11] J Milnor, On the construction FK, from: "Algebraic topology—a student's guide" (editor J F Adams), London Mathematical Society Lecture Note Series 4, Cambridge University Press (1972)

[12] V A Vassiliev, Cohomology of knot spaces, from: "Theory of singularities and its applications", Adv. Soviet Math. 1, Amer. Math. Soc. (1990) 23

[13] V A Vassiliev, Complements of discriminants of smooth maps: topology and applications, Translations of Mathematical Monographs 98, American Mathematical Society (1992)

[14] M Weiss, Calculus of embeddings, Bull. Amer. Math. Soc. $($N.S.$)$ 33 (1996) 177

[15] M Weiss, Embeddings from the point of view of immersion theory I, Geom. Topol. 3 (1999) 67

[16] G W Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics 61, Springer (1978)

Cité par Sources :