Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We investigate geometrical interpretations of various structure maps associated with the Landweber–Novikov algebra and its integral dual . In particular, we study the coproduct and antipode in , together with the left and right actions of on which underly the construction of the quantum (or Drinfeld) double . We set our realizations in the context of double complex cobordism, utilizing certain manifolds of bounded flags which generalize complex projective space and may be canonically expressed as toric varieties. We discuss their cell structure by analogy with the classical Schubert decomposition, and detail the implications for Poincaré duality with respect to double cobordism theory; these lead directly to our main results for the Landweber–Novikov algebra.
Buchstaber, Victor M 1 ; Ray, Nigel 2
@article{GT_1998_2_1_a4, author = {Buchstaber, Victor M and Ray, Nigel}, title = {Flag manifolds and the {Landweber{\textendash}Novikov} algebra}, journal = {Geometry & topology}, pages = {79--101}, publisher = {mathdoc}, volume = {2}, number = {1}, year = {1998}, doi = {10.2140/gt.1998.2.79}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1998.2.79/} }
Buchstaber, Victor M; Ray, Nigel. Flag manifolds and the Landweber–Novikov algebra. Geometry & topology, Tome 2 (1998) no. 1, pp. 79-101. doi : 10.2140/gt.1998.2.79. http://geodesic.mathdoc.fr/articles/10.2140/gt.1998.2.79/
[1] Stable homotopy and generalised homology, University of Chicago Press (1974)
,[2] Combinatorial theory, Grundlehren der Mathematischen Wissenschaften 234, Springer (1979)
,[3] The KO–theory of toric manifolds, preprint, Rider University (1997)
, ,[4] Applications of the theory of Morse to symmetric spaces, Amer. J. Math. 80 (1958) 964
, ,[5] Schubert calculus in complex cobordism, Trans. Amer. Math. Soc. 331 (1992) 799
, ,[6] The Landweber–Novikov algebra and formal vector fields on the line, Funktsional. Anal. i Prilozhen. 12 (1978) 1, 96
, ,[7] Semigroups of maps into groups, operator doubles, and complex cobordisms, from: "Topics in topology and mathematical physics", Amer. Math. Soc. Transl. Ser. 2 170, Amer. Math. Soc. (1995) 9
,[8] Double cobordism and quantum doubles, preprint, University of Manchester (1997)
, ,[9] Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991) 417
, ,[10] The Grassmannian geometry of spectra, J. Pure Appl. Algebra 54 (1988) 37
,[11] Introduction to toric varieties, Annals of Mathematics Studies 131, Princeton University Press (1993)
,[12] Principles of algebraic geometry, Wiley Classics Library, John Wiley Sons (1994)
, ,[13] Geometry of Coxeter groups, Research Notes in Mathematics 54, Pitman (Advanced Publishing Program) (1982)
,[14] Quantum groups, Graduate Texts in Mathematics 155, Springer (1995)
,[15] Complex cobordism ring and conformal field theory over $\mathbb{Z}$, Math. Ann. 291 (1991) 551
, , ,[16] Schubert polynomials, from: "Surveys in combinatorics, 1991 (Guildford, 1991)", London Math. Soc. Lecture Note Ser. 166, Cambridge Univ. Press (1991) 73
,[17] Bott–Samelson varieties and configuration spaces, preprint, Northeastern University (1996)
,[18] Various doublings of Hopf algebras. Algebras of operators on quantum groups, complex cobordisms, Uspekhi Mat. Nauk 47 (1992) 189
,[19] Elementary proofs of some results of cobordism theory using Steenrod operations, Advances in Math. 7 (1971)
,[20] SU and Sp bordism, PhD thesis, University of Manchester (1969)
,[21] On a construction in bordism theory, Proc. Edinburgh Math. Soc. $(2)$ 29 (1986) 413
,[22] Combinatorial models for coalgebraic structures, Adv. Math. 138 (1998) 211
, ,[23] On $\mathrm{SU}\times\mathrm{SU}$–bordism, Quart. J. Math. Oxford Ser. $(2)$ 21 (1970) 137
, ,[24] Notes on cobordism theory, Mathematical notes, Princeton University Press (1968)
,Cité par Sources :