Group negative curvature for 3–manifolds with genuine laminations
Geometry & topology, Tome 2 (1998) no. 1, pp. 65-77.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that if a closed atoroidal 3–manifold M contains a genuine lamination, then it is group negatively curved in the sense of Gromov. Specifically, we exploit the structure of the non-product complementary regions of the genuine lamination and then apply the first author’s Ubiquity Theorem to show that M satisfies a linear isoperimetric inequality.

DOI : 10.2140/gt.1998.2.65
Keywords: lamination, essential lamination, genuine lamination, group negatively curved, word hyperbolic

Gabai, David 1 ; Kazez, William H 2

1 California Institute of Technology, Pasadena, California 91125-0001, USA
2 University of Georgia, Athens, Georgia 30602, USA
@article{GT_1998_2_1_a3,
     author = {Gabai, David and Kazez, William H},
     title = {Group negative curvature for 3{\textendash}manifolds with genuine laminations},
     journal = {Geometry & topology},
     pages = {65--77},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {1998},
     doi = {10.2140/gt.1998.2.65},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1998.2.65/}
}
TY  - JOUR
AU  - Gabai, David
AU  - Kazez, William H
TI  - Group negative curvature for 3–manifolds with genuine laminations
JO  - Geometry & topology
PY  - 1998
SP  - 65
EP  - 77
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.1998.2.65/
DO  - 10.2140/gt.1998.2.65
ID  - GT_1998_2_1_a3
ER  - 
%0 Journal Article
%A Gabai, David
%A Kazez, William H
%T Group negative curvature for 3–manifolds with genuine laminations
%J Geometry & topology
%D 1998
%P 65-77
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.1998.2.65/
%R 10.2140/gt.1998.2.65
%F GT_1998_2_1_a3
Gabai, David; Kazez, William H. Group negative curvature for 3–manifolds with genuine laminations. Geometry & topology, Tome 2 (1998) no. 1, pp. 65-77. doi : 10.2140/gt.1998.2.65. http://geodesic.mathdoc.fr/articles/10.2140/gt.1998.2.65/

[1] M Bestvina, M Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85

[2] M Brittenham, Essential laminations in Seifert-fibered spaces, Topology 32 (1993) 61

[3] M Brittenham, Essential laminations and Haken normal form, Pacific J. Math. 168 (1995) 217

[4] E Claus, PhD thesis, University of Texas (1990)

[5] C Delman, R Roberts

[6] D Gabai, Problems in foliations and laminations, from: "Geometric topology (Athens, GA, 1993)", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 1

[7] D Gabai, Essential laminations and Kneser normal form, in preparation

[8] D Gabai, The ubiquitous nature of quasi-minimal semi-Euclidean laminations in 3–manifolds, Surveys in Differential Geometry 5

[9] D Gabai, W H Kazez, Homotopy, isotopy and genuine laminations of 3–manifolds, from: "Geometric topology (Athens, GA, 1993)", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 123

[10] D Gabai, W H Kazez, The finiteness of the mapping class group for atoroidal 3–manifolds with genuine laminations, J. Differential Geom. 50 (1998) 123

[11] D Gabai, U Oertel, Essential laminations in 3–manifolds, Ann. of Math. $(2)$ 130 (1989) 41

[12] M Gromov, Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[13] W Haken, Theorie der Normalflächen, Acta Math. 105 (1961) 245

[14] K Johannson, Homotopy equivalences of 3–manifolds with boundaries, Lecture Notes in Mathematics 761, Springer (1979)

[15] W H Jaco, P B Shalen, Seifert fibered spaces in 3–manifolds, Mem. Amer. Math. Soc. 21 (1979)

[16] L Mosher, Combinatorics of pseudo-Anosov flows, in preparation

[17] R Naimi, Constructing essential laminations in $2$-bridge knot surgered $3$-manifolds, Pacific J. Math. 180 (1997) 153

[18] W P Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. $($N.S.$)$ 6 (1982) 357

[19] W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. $($N.S.$)$ 19 (1988) 417

[20] Y Q Wu, Dehn surgery on arborescent knots, J. Differential Geom. 43 (1996) 171

Cité par Sources :