Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that if a closed atoroidal 3–manifold contains a genuine lamination, then it is group negatively curved in the sense of Gromov. Specifically, we exploit the structure of the non-product complementary regions of the genuine lamination and then apply the first author’s Ubiquity Theorem to show that satisfies a linear isoperimetric inequality.
Gabai, David 1 ; Kazez, William H 2
@article{GT_1998_2_1_a3, author = {Gabai, David and Kazez, William H}, title = {Group negative curvature for 3{\textendash}manifolds with genuine laminations}, journal = {Geometry & topology}, pages = {65--77}, publisher = {mathdoc}, volume = {2}, number = {1}, year = {1998}, doi = {10.2140/gt.1998.2.65}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1998.2.65/} }
TY - JOUR AU - Gabai, David AU - Kazez, William H TI - Group negative curvature for 3–manifolds with genuine laminations JO - Geometry & topology PY - 1998 SP - 65 EP - 77 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.1998.2.65/ DO - 10.2140/gt.1998.2.65 ID - GT_1998_2_1_a3 ER -
Gabai, David; Kazez, William H. Group negative curvature for 3–manifolds with genuine laminations. Geometry & topology, Tome 2 (1998) no. 1, pp. 65-77. doi : 10.2140/gt.1998.2.65. http://geodesic.mathdoc.fr/articles/10.2140/gt.1998.2.65/
[1] A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85
, ,[2] Essential laminations in Seifert-fibered spaces, Topology 32 (1993) 61
,[3] Essential laminations and Haken normal form, Pacific J. Math. 168 (1995) 217
,[4]
, PhD thesis, University of Texas (1990)[5]
,[6] Problems in foliations and laminations, from: "Geometric topology (Athens, GA, 1993)", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 1
,[7] Essential laminations and Kneser normal form, in preparation
,[8] The ubiquitous nature of quasi-minimal semi-Euclidean laminations in 3–manifolds, Surveys in Differential Geometry 5
,[9] Homotopy, isotopy and genuine laminations of 3–manifolds, from: "Geometric topology (Athens, GA, 1993)", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 123
, ,[10] The finiteness of the mapping class group for atoroidal 3–manifolds with genuine laminations, J. Differential Geom. 50 (1998) 123
, ,[11] Essential laminations in 3–manifolds, Ann. of Math. $(2)$ 130 (1989) 41
, ,[12] Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75
,[13] Theorie der Normalflächen, Acta Math. 105 (1961) 245
,[14] Homotopy equivalences of 3–manifolds with boundaries, Lecture Notes in Mathematics 761, Springer (1979)
,[15] Seifert fibered spaces in 3–manifolds, Mem. Amer. Math. Soc. 21 (1979)
, ,[16] Combinatorics of pseudo-Anosov flows, in preparation
,[17] Constructing essential laminations in $2$-bridge knot surgered $3$-manifolds, Pacific J. Math. 180 (1997) 153
,[18] Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. $($N.S.$)$ 6 (1982) 357
,[19] On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. $($N.S.$)$ 19 (1988) 417
,[20] Dehn surgery on arborescent knots, J. Differential Geom. 43 (1996) 171
,Cité par Sources :