Intersections in hyperbolic manifolds
Geometry & topology, Tome 2 (1998) no. 1, pp. 117-144.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We obtain some restrictions on the topology of infinite volume hyperbolic manifolds. In particular, for any n and any closed negatively curved manifold M of dimension 3, only finitely many hyperbolic n–manifolds are total spaces of orientable vector bundles over M.

DOI : 10.2140/gt.1998.2.117
Keywords: hyperbolic manifold, intersection form, representation variety

Belegradek, Igor 1

1 Department of Mathematics and Statistics, McMaster University, 1280 Main St West, Hamilton, Ontario, L8S 4K1, Canada
@article{GT_1998_2_1_a6,
     author = {Belegradek, Igor},
     title = {Intersections in hyperbolic manifolds},
     journal = {Geometry & topology},
     pages = {117--144},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {1998},
     doi = {10.2140/gt.1998.2.117},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1998.2.117/}
}
TY  - JOUR
AU  - Belegradek, Igor
TI  - Intersections in hyperbolic manifolds
JO  - Geometry & topology
PY  - 1998
SP  - 117
EP  - 144
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.1998.2.117/
DO  - 10.2140/gt.1998.2.117
ID  - GT_1998_2_1_a6
ER  - 
%0 Journal Article
%A Belegradek, Igor
%T Intersections in hyperbolic manifolds
%J Geometry & topology
%D 1998
%P 117-144
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.1998.2.117/
%R 10.2140/gt.1998.2.117
%F GT_1998_2_1_a6
Belegradek, Igor. Intersections in hyperbolic manifolds. Geometry & topology, Tome 2 (1998) no. 1, pp. 117-144. doi : 10.2140/gt.1998.2.117. http://geodesic.mathdoc.fr/articles/10.2140/gt.1998.2.117/

[1] M T Anderson, Metrics of negative curvature on vector bundles, Proc. Amer. Math. Soc. 99 (1987) 357

[2] W Ballmann, M Gromov, V Schroeder, Manifolds of nonpositive curvature, Progress in Mathematics 61, Birkhäuser (1985)

[3] I O Belegradek, Conformally flat Seifert manifolds, Siberian Adv. Math. 3 (1993) 1

[4] I Belegradek, Some curious Kleinian groups and hyperbolic 5–manifolds, Transform. Groups 2 (1997) 3

[5] R Benedetti, C Petronio, Lectures on hyperbolic geometry, Universitext, Springer (1992)

[6] M Bestvina, M Feighn, Stable actions of groups on real trees, Invent. Math. 121 (1995) 287

[7] N Bourbaki, Integration, Livre VI, Hermann (1952)

[8] B H Bowditch, Discrete parabolic groups, J. Differential Geom. 38 (1993) 559

[9] B H Bowditch, Geometrical finiteness with variable negative curvature, Duke Math. J. 77 (1995) 229

[10] K S Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1982)

[11] R D Canary, D B A Epstein, P Green, Notes on notes of Thurston (editor D B A Epstein), London Math. Soc. Lecture Notes 111, Cambridge University Press (1984)

[12] M Coornaert, T Delzant, A Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics 1441, Springer (1990)

[13] A Dold, Lectures on algebraic topology, Die Grundlehren der mathematischen Wissenschaften 200, Springer (1972)

[14] P Eberlein, B O’Neill, Visibility manifolds, Pacific J. Math. 46 (1973) 45

[15] W M Goldman, Topological components of spaces of representations, Invent. Math. 93 (1988) 557

[16] W M Goldman, M E Kapovich, B Leeb, Complex hyperbolic manifolds homotopy equivalent to a Riemann surface, to appear

[17] P A Griffiths, J W Morgan, Rational homotopy theory and differential forms, Progress in Mathematics 16, Birkhäuser (1981)

[18] M Gromov, H B Lawson Jr., W Thurston, Hyperbolic 4–manifolds and conformally flat 3–manifolds, Inst. Hautes Études Sci. Publ. Math. (1988)

[19] N Gusevskii, H Klimenko, Fox–Artin arc and constructing Kleinian groups acting on $S^3$ with limit set a wild Cantor set, Internat. J. Math. 6 (1995) 19

[20] F Hirzebruch, Topological methods in algebraic geometry, Die Grundlehren der Mathematischen Wissenschaften 131, Springer (1966)

[21] M È Kapovich, Flat conformal structures on three-dimensional manifolds: the existence problem I, Sibirsk. Mat. Zh. 30 (1989) 60, 216

[22] M E Kapovich, On hyperbolic $4$–manifolds fibered over surfaces, preprint (1993)

[23] N H Kuiper, Hyperbolic 4–manifolds and tesselations, Inst. Hautes Études Sci. Publ. Math. (1988)

[24] N H Kuiper, Fairly symmetric hyperbolic manifolds, from: "Geometry and topology of submanifolds II (Avignon, 1988)", World Sci. Publ., Teaneck, NJ (1990) 165

[25] W B R Lickorish, L C Siebenmann, Regular neighbourhoods and the stable range, Trans. Amer. Math. Soc. 139 (1969) 207

[26] W L Lok, Deformations of locally homogeneous spaces and Kleinian groups, PhD thesis, Columbia University (1984)

[27] F Luo, Constructing conformally flat structures on some Seifert fibred 3–manifolds, Math. Ann. 294 (1992) 449

[28] F Luo, Möbius structures on Seifert manifolds I, J. Differential Geom. 42 (1995) 634

[29] S Matsumoto, Foundations of flat conformal structure, from: "Aspects of low-dimensional manifolds", Adv. Stud. Pure Math. 20, Kinokuniya (1992) 167

[30] J J Millson, M S Raghunathan, Geometric construction of cohomology for arithmetic groups I, Proc. Indian Acad. Sci. Math. Sci. 90 (1981) 103

[31] J W Milnor, J D Stasheff, Characteristic classes, Annals of Mathematics Studies 76, Princeton University Press (1974)

[32] J W Morgan, $\Lambda$–trees and their applications, Bull. Amer. Math. Soc. $($N.S.$)$ 26 (1992) 87

[33] M S Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete 68, Springer (1972)

[34] A G Reznikov, Harmonic maps, hyperbolic cohomology and higher Milnor inequalities, Topology 32 (1993) 899

Cité par Sources :