The symmetry of intersection numbers in group theory
Geometry & topology, Tome 2 (1998) no. 1, pp. 11-29.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

For suitable subgroups of a finitely generated group, we define the intersection number of one subgroup with another subgroup and show that this number is symmetric. We also give an interpretation of this number.

DOI : 10.2140/gt.1998.2.11
Keywords: ends, amalgamated free products, trees

Scott, Peter 1

1 Mathematics Department, University of Michigan, Ann Arbor, Michigan 48109, USA
@article{GT_1998_2_1_a1,
     author = {Scott, Peter},
     title = {The symmetry of intersection numbers in group theory},
     journal = {Geometry & topology},
     pages = {11--29},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {1998},
     doi = {10.2140/gt.1998.2.11},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1998.2.11/}
}
TY  - JOUR
AU  - Scott, Peter
TI  - The symmetry of intersection numbers in group theory
JO  - Geometry & topology
PY  - 1998
SP  - 11
EP  - 29
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.1998.2.11/
DO  - 10.2140/gt.1998.2.11
ID  - GT_1998_2_1_a1
ER  - 
%0 Journal Article
%A Scott, Peter
%T The symmetry of intersection numbers in group theory
%J Geometry & topology
%D 1998
%P 11-29
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.1998.2.11/
%R 10.2140/gt.1998.2.11
%F GT_1998_2_1_a1
Scott, Peter. The symmetry of intersection numbers in group theory. Geometry & topology, Tome 2 (1998) no. 1, pp. 11-29. doi : 10.2140/gt.1998.2.11. http://geodesic.mathdoc.fr/articles/10.2140/gt.1998.2.11/

[1] D E Cohen, Groups of cohomological dimension one, Lecture Notes in Mathematics 245, Springer (1972)

[2] M J Dunwoody, M E Sageev, JSJ–splittings for finitely presented groups over slender groups, Invent. Math. 135 (1999) 25

[3] M Freedman, J Hass, P Scott, Closed geodesics on surfaces, Bull. London Math. Soc. 14 (1982) 385

[4] M Freedman, J Hass, P Scott, Least area incompressible surfaces in 3–manifolds, Invent. Math. 71 (1983) 609

[5] C H Houghton, Ends of locally compact groups and their coset spaces, J. Austral. Math. Soc. 17 (1974) 274

[6] P H Kropholler, M A Roller, Splittings of Poincaré duality groups, Math. Z. 197 (1988) 421

[7] E Rips, Z Sela, Cyclic splittings of finitely-presented groups and the canonical JSJ decomposition

[8] P Scott, Ends of pairs of groups, J. Pure Appl. Algebra 11 (1977/78) 179

[9] P Scott, A new proof of the annulus and torus theorems, Amer. J. Math. 102 (1980) 241

[10] G P Scott, G A Swarup, An algebraic annulus theorem, Pacific J. Math. 196 (2000) 461

[11] P Scott, T Wall, Topological methods in group theory, from: "Homological group theory (Proc. Sympos., Durham, 1977)", London Math. Soc. Lecture Note Ser. 36, Cambridge Univ. Press (1979) 137

[12] J P Serre, Arbres, amalgames, $\mathrm{SL}_2$, Astérisque 46, Société Mathématique de France (1977)

[13] J P Serre, Trees, Springer (1980)

Cité par Sources :