Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
For suitable subgroups of a finitely generated group, we define the intersection number of one subgroup with another subgroup and show that this number is symmetric. We also give an interpretation of this number.
Scott, Peter 1
@article{GT_1998_2_1_a1, author = {Scott, Peter}, title = {The symmetry of intersection numbers in group theory}, journal = {Geometry & topology}, pages = {11--29}, publisher = {mathdoc}, volume = {2}, number = {1}, year = {1998}, doi = {10.2140/gt.1998.2.11}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1998.2.11/} }
Scott, Peter. The symmetry of intersection numbers in group theory. Geometry & topology, Tome 2 (1998) no. 1, pp. 11-29. doi : 10.2140/gt.1998.2.11. http://geodesic.mathdoc.fr/articles/10.2140/gt.1998.2.11/
[1] Groups of cohomological dimension one, Lecture Notes in Mathematics 245, Springer (1972)
,[2] JSJ–splittings for finitely presented groups over slender groups, Invent. Math. 135 (1999) 25
, ,[3] Closed geodesics on surfaces, Bull. London Math. Soc. 14 (1982) 385
, , ,[4] Least area incompressible surfaces in 3–manifolds, Invent. Math. 71 (1983) 609
, , ,[5] Ends of locally compact groups and their coset spaces, J. Austral. Math. Soc. 17 (1974) 274
,[6] Splittings of Poincaré duality groups, Math. Z. 197 (1988) 421
, ,[7] Cyclic splittings of finitely-presented groups and the canonical JSJ decomposition
, ,[8] Ends of pairs of groups, J. Pure Appl. Algebra 11 (1977/78) 179
,[9] A new proof of the annulus and torus theorems, Amer. J. Math. 102 (1980) 241
,[10] An algebraic annulus theorem, Pacific J. Math. 196 (2000) 461
, ,[11] Topological methods in group theory, from: "Homological group theory (Proc. Sympos., Durham, 1977)", London Math. Soc. Lecture Note Ser. 36, Cambridge Univ. Press (1979) 137
, ,[12] Arbres, amalgames, $\mathrm{SL}_2$, Astérisque 46, Société Mathématique de France (1977)
,[13] Trees, Springer (1980)
,Cité par Sources :