Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Using the ‘Riemann Problem with zeros’ method, Ward has constructed exact solutions to a –dimensional integrable Chiral Model, which exhibit solitons with nontrivial scattering. We give a correspondence between what we conjecture to be all pure soliton solutions and certain holomorphic vector bundles on a compact surface.
Anand, Christopher 1
@article{GT_1997_1_1_a1, author = {Anand, Christopher}, title = {Ward{\textquoteright}s solitons}, journal = {Geometry & topology}, pages = {9--20}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {1997}, doi = {10.2140/gt.1997.1.9}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1997.1.9/} }
Anand, Christopher. Ward’s solitons. Geometry & topology, Tome 1 (1997) no. 1, pp. 9-20. doi : 10.2140/gt.1997.1.9. http://geodesic.mathdoc.fr/articles/10.2140/gt.1997.1.9/
[1] A closed form for unitons, J. Math. Soc. Japan 50 (1998) 737
,[2] Monopoles and geodesics, Comm. Math. Phys. 83 (1982) 579
,[3] Soliton solutions and nontrivial scattering in an integrable chiral model in $(2+1)$ dimensions, J. Math. Phys. 37 (1996) 3422
,[4] Nontrivial soliton scattering in an integrable chiral model in $(2+1)$ dimensions, J. Math. Phys. 33 (1992) 2269
,[5] Classical solutions of the chiral model, unitons, and holomorphic vector bundles, Comm. Math. Phys. 128 (1990) 319
,[6] Nontrivial scattering of localized solitons in a $(2+1)$–dimensional integrable system, Phys. Lett. A 208 (1995) 203
,Cité par Sources :