An invariant of smooth 4–manifolds
Geometry & topology, Tome 1 (1997) no. 1, pp. 71-89.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We define a diffeomorphism invariant of smooth 4–manifolds which we can estimate for many smoothings of 4 and other smooth 4–manifolds. Using this invariant we can show that uncountably many smoothings of 4 support no Stein structure. Gompf constructed uncountably many smoothings of 4 which do support Stein structures. Other applications of this invariant are given.

DOI : 10.2140/gt.1997.1.71
Keywords: smooth 4–manifolds, Stein manifolds, covering spaces

Taylor, Laurence R 1

1 Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556, USA
@article{GT_1997_1_1_a5,
     author = {Taylor, Laurence R},
     title = {An invariant of smooth 4{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {71--89},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1997},
     doi = {10.2140/gt.1997.1.71},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1997.1.71/}
}
TY  - JOUR
AU  - Taylor, Laurence R
TI  - An invariant of smooth 4–manifolds
JO  - Geometry & topology
PY  - 1997
SP  - 71
EP  - 89
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.1997.1.71/
DO  - 10.2140/gt.1997.1.71
ID  - GT_1997_1_1_a5
ER  - 
%0 Journal Article
%A Taylor, Laurence R
%T An invariant of smooth 4–manifolds
%J Geometry & topology
%D 1997
%P 71-89
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.1997.1.71/
%R 10.2140/gt.1997.1.71
%F GT_1997_1_1_a5
Taylor, Laurence R. An invariant of smooth 4–manifolds. Geometry & topology, Tome 1 (1997) no. 1, pp. 71-89. doi : 10.2140/gt.1997.1.71. http://geodesic.mathdoc.fr/articles/10.2140/gt.1997.1.71/

[1] Ž Bižaca, J Etnyre, Smooth structures on collarable ends of 4–manifolds, Topology 37 (1998) 461

[2] A J Casson, Three lectures on new-infinite constructions in 4–dimensional manifolds, from: "À la recherche de la topologie perdue", Progr. Math. 62, Birkhäuser (1986) 201

[3] S De Michelis, M H Freedman, Uncountably many exotic $\mathbb{R}^4$'s in standard 4–space, J. Differential Geom. 35 (1992) 219

[4] F Ding, Uncountably many smooth structures on some 4–manifolds (1996)

[5] S K Donaldson, Connections, cohomology and the intersection forms of 4–manifolds, J. Differential Geom. 24 (1986) 275

[6] M H Freedman, A fake $S^{3}\times \mathbf{R}$, Ann. of Math. $(2)$ 110 (1979) 177

[7] M H Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357

[8] M H Freedman, L R Taylor, A universal smoothing of four-space, J. Differential Geom. 24 (1986) 69

[9] M Furuta, Monopole equation and the $11/8$–conjecture (1995)

[10] R E Gompf, An exotic menagerie, J. Differential Geom. 37 (1993) 199

[11] R Gompf, Handlebody construction of Stein surfaces (1996)

[12] R Gompf, Kirby calculus for Stein surfaces (1997)

[13] H Grauert, R Remmert, Theory of Stein spaces, Grundlehren der Mathematischen Wissenschaften, Springer (1979)

[14] R C Kirby, The topology of 4–manifolds, Lecture Notes in Mathematics 1374, Springer (1989)

[15] R Kirby, Problems in low-dimensional topology, from: "Geometric topology (Athens, GA, 1993)", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 35

[16] R C Kirby, L C Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Princeton University Press (1977)

[17] J Milnor, Morse theory, Annals of Mathematics Studies 51, Princeton University Press (1963)

[18] C H Taubes, Gauge theory on asymptotically periodic 4–manifolds, J. Differential Geom. 25 (1987) 363

[19] C T C Wall, Diffeomorphisms of 4–manifolds, J. London Math. Soc. 39 (1964) 131

Cité par Sources :