Spinc–structures and homotopy equivalences
Geometry & topology, Tome 1 (1997) no. 1, pp. 41-50.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that a homotopy equivalence between manifolds induces a correspondence between their spinc–structures, even in the presence of 2–torsion. This is proved by generalizing spinc–structures to Poincaré complexes. A procedure is given for explicitly computing the correspondence under reasonable hypotheses.

DOI : 10.2140/gt.1997.1.41
Keywords: 4–manifold, Seiberg–Witten invariant, Poincaré complex

Gompf, Robert E 1

1 Department of Mathematics, The University of Texas at Austin, Austin, Texas 78712-1082, USA
@article{GT_1997_1_1_a3,
     author = {Gompf, Robert E},
     title = {Spinc{\textendash}structures and homotopy equivalences},
     journal = {Geometry & topology},
     pages = {41--50},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1997},
     doi = {10.2140/gt.1997.1.41},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1997.1.41/}
}
TY  - JOUR
AU  - Gompf, Robert E
TI  - Spinc–structures and homotopy equivalences
JO  - Geometry & topology
PY  - 1997
SP  - 41
EP  - 50
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.1997.1.41/
DO  - 10.2140/gt.1997.1.41
ID  - GT_1997_1_1_a3
ER  - 
%0 Journal Article
%A Gompf, Robert E
%T Spinc–structures and homotopy equivalences
%J Geometry & topology
%D 1997
%P 41-50
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.1997.1.41/
%R 10.2140/gt.1997.1.41
%F GT_1997_1_1_a3
Gompf, Robert E. Spinc–structures and homotopy equivalences. Geometry & topology, Tome 1 (1997) no. 1, pp. 41-50. doi : 10.2140/gt.1997.1.41. http://geodesic.mathdoc.fr/articles/10.2140/gt.1997.1.41/

[1] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1990)

[2] F Hirzebruch, H Hopf, Felder von Flächenelementen in 4–dimensionalen Mannigfaltigkeiten, Math. Ann. 136 (1958) 156

[3] R C Kirby, L C Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Princeton University Press (1977)

[4] J Milnor, On spaces having the homotopy type of a CW–complex, Trans. Amer. Math. Soc. 90 (1959) 272

[5] J Milnor, Spin structures on manifolds, Enseignement Math. $(2)$ 9 (1963) 198

[6] J W Morgan, The Seiberg–Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes 44, Princeton University Press (1996)

[7] M Spivak, Spaces satisfying Poincaré duality, Topology 6 (1967) 77

[8] G W Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics 61, Springer (1978)

Cité par Sources :