Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that a homotopy equivalence between manifolds induces a correspondence between their spin–structures, even in the presence of 2–torsion. This is proved by generalizing spin–structures to Poincaré complexes. A procedure is given for explicitly computing the correspondence under reasonable hypotheses.
Gompf, Robert E 1
@article{GT_1997_1_1_a3, author = {Gompf, Robert E}, title = {Spinc{\textendash}structures and homotopy equivalences}, journal = {Geometry & topology}, pages = {41--50}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {1997}, doi = {10.2140/gt.1997.1.41}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1997.1.41/} }
Gompf, Robert E. Spinc–structures and homotopy equivalences. Geometry & topology, Tome 1 (1997) no. 1, pp. 41-50. doi : 10.2140/gt.1997.1.41. http://geodesic.mathdoc.fr/articles/10.2140/gt.1997.1.41/
[1] The geometry of four-manifolds, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1990)
, ,[2] Felder von Flächenelementen in 4–dimensionalen Mannigfaltigkeiten, Math. Ann. 136 (1958) 156
, ,[3] Foundational essays on topological manifolds, smoothings, and triangulations, Princeton University Press (1977)
, ,[4] On spaces having the homotopy type of a CW–complex, Trans. Amer. Math. Soc. 90 (1959) 272
,[5] Spin structures on manifolds, Enseignement Math. $(2)$ 9 (1963) 198
,[6] The Seiberg–Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes 44, Princeton University Press (1996)
,[7] Spaces satisfying Poincaré duality, Topology 6 (1967) 77
,[8] Elements of homotopy theory, Graduate Texts in Mathematics 61, Springer (1978)
,Cité par Sources :