Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We describe a new approach to the canonical decompositions of 3–manifolds along tori and annuli due to Jaco–Shalen and Johannson (with ideas from Waldhausen) – the so-called JSJ–decomposition theorem. This approach gives an accessible proof of the decomposition theorem; in particular it does not use the annulus–torus theorems, and the theory of Seifert fibrations does not need to be developed in advance.
Neumann, Walter D 1 ; Swarup, Gadde A 1
@article{GT_1997_1_1_a2, author = {Neumann, Walter D and Swarup, Gadde A}, title = {Canonical decompositions of 3{\textendash}manifolds}, journal = {Geometry & topology}, pages = {21--40}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {1997}, doi = {10.2140/gt.1997.1.21}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1997.1.21/} }
Neumann, Walter D; Swarup, Gadde A. Canonical decompositions of 3–manifolds. Geometry & topology, Tome 1 (1997) no. 1, pp. 21-40. doi : 10.2140/gt.1997.1.21. http://geodesic.mathdoc.fr/articles/10.2140/gt.1997.1.21/
[1] Three-dimensional link theory and invariants of plane curve singularities, Annals of Mathematics Studies 110, Princeton University Press (1985)
, ,[2] Least area incompressible surfaces in 3–manifolds, Invent. Math. 71 (1983) 609
, , ,[3] Seifert fibered spaces in 3–manifolds, Mem. Amer. Math. Soc. 21 (1979)
, ,[4] Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics 43, American Mathematical Society (1980)
,[5] Homotopy equivalences of 3–manifolds with boundaries, Lecture Notes in Mathematics 761, Springer (1979)
,[6] A geometric characteristic splitting in all dimensions, Comment. Math. Helv. 75 (2000) 201
, ,[7] Strong annulus and torus theorems and the enclosing property of characteristic submanifolds of 3–manifolds, Quart. J. Math. Oxford Ser. $(2)$ 35 (1984) 485
,[8] On incompressible surfaces in the complements of knots, J. Indian Math. Soc. $($N.S.$)$ 37 (1973)
,[9] On irreducible 3–manifolds which are sufficiently large, Ann. of Math. $(2)$ 87 (1968) 56
,[10] Gruppen mit Zentrum und $3$-dimensionale Mannigfaltigkeiten, Topology 6 (1967) 505
,[11] On the determination of some 3–manifolds by their fundamental groups alone, from: "Proc. of International Symposium in Topology, Hercy-Novi, Yugoslavia, 1968", Beograd (1969) 331
,[12] Recent results on sufficiently large 3–manifolds, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, CA, 1976), Part 2", Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc. (1978) 21
,Cité par Sources :