Canonical decompositions of 3–manifolds
Geometry & topology, Tome 1 (1997) no. 1, pp. 21-40.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We describe a new approach to the canonical decompositions of 3–manifolds along tori and annuli due to Jaco–Shalen and Johannson (with ideas from Waldhausen) – the so-called JSJ–decomposition theorem. This approach gives an accessible proof of the decomposition theorem; in particular it does not use the annulus–torus theorems, and the theory of Seifert fibrations does not need to be developed in advance.

DOI : 10.2140/gt.1997.1.21
Keywords: 3–manifold, torus decomposition, JSJ–decomposition, Seifert manifold, simple manifold

Neumann, Walter D 1 ; Swarup, Gadde A 1

1 Department of Mathematics, The University of Melbourne, Parkville, Victoria 3052, Australia
@article{GT_1997_1_1_a2,
     author = {Neumann, Walter D and Swarup, Gadde A},
     title = {Canonical decompositions of 3{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {21--40},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1997},
     doi = {10.2140/gt.1997.1.21},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1997.1.21/}
}
TY  - JOUR
AU  - Neumann, Walter D
AU  - Swarup, Gadde A
TI  - Canonical decompositions of 3–manifolds
JO  - Geometry & topology
PY  - 1997
SP  - 21
EP  - 40
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.1997.1.21/
DO  - 10.2140/gt.1997.1.21
ID  - GT_1997_1_1_a2
ER  - 
%0 Journal Article
%A Neumann, Walter D
%A Swarup, Gadde A
%T Canonical decompositions of 3–manifolds
%J Geometry & topology
%D 1997
%P 21-40
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.1997.1.21/
%R 10.2140/gt.1997.1.21
%F GT_1997_1_1_a2
Neumann, Walter D; Swarup, Gadde A. Canonical decompositions of 3–manifolds. Geometry & topology, Tome 1 (1997) no. 1, pp. 21-40. doi : 10.2140/gt.1997.1.21. http://geodesic.mathdoc.fr/articles/10.2140/gt.1997.1.21/

[1] D Eisenbud, W Neumann, Three-dimensional link theory and invariants of plane curve singularities, Annals of Mathematics Studies 110, Princeton University Press (1985)

[2] M Freedman, J Hass, P Scott, Least area incompressible surfaces in 3–manifolds, Invent. Math. 71 (1983) 609

[3] W H Jaco, P B Shalen, Seifert fibered spaces in 3–manifolds, Mem. Amer. Math. Soc. 21 (1979)

[4] W Jaco, Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics 43, American Mathematical Society (1980)

[5] K Johannson, Homotopy equivalences of 3–manifolds with boundaries, Lecture Notes in Mathematics 761, Springer (1979)

[6] B Leeb, P Scott, A geometric characteristic splitting in all dimensions, Comment. Math. Helv. 75 (2000) 201

[7] P Scott, Strong annulus and torus theorems and the enclosing property of characteristic submanifolds of 3–manifolds, Quart. J. Math. Oxford Ser. $(2)$ 35 (1984) 485

[8] G A Swarup, On incompressible surfaces in the complements of knots, J. Indian Math. Soc. $($N.S.$)$ 37 (1973)

[9] F Waldhausen, On irreducible 3–manifolds which are sufficiently large, Ann. of Math. $(2)$ 87 (1968) 56

[10] F Waldhausen, Gruppen mit Zentrum und $3$-dimensionale Mannigfaltigkeiten, Topology 6 (1967) 505

[11] F Waldhausen, On the determination of some 3–manifolds by their fundamental groups alone, from: "Proc. of International Symposium in Topology, Hercy-Novi, Yugoslavia, 1968", Beograd (1969) 331

[12] F Waldhausen, Recent results on sufficiently large 3–manifolds, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, CA, 1976), Part 2", Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc. (1978) 21

Cité par Sources :