Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that groups satisfying Kazhdan’s property have no unbounded actions on finite dimensional cube complexes, and deduce that there is a locally Riemannian manifold which is not homotopy equivalent to any finite dimensional, locally cube complex.
Niblo, Graham A 1 ; Reeves, Lawrence 2
@article{GT_1997_1_1_a0, author = {Niblo, Graham A and Reeves, Lawrence}, title = {Groups acting on {CAT(0)} cube complexes}, journal = {Geometry & topology}, pages = {1--7}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {1997}, doi = {10.2140/gt.1997.1.1}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1997.1.1/} }
Niblo, Graham A; Reeves, Lawrence. Groups acting on CAT(0) cube complexes. Geometry & topology, Tome 1 (1997) no. 1, pp. 1-7. doi : 10.2140/gt.1997.1.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.1997.1.1/
[1] Geodesics and curvature in metric simplicial complexes, from: "Group theory from a geometrical viewpoint (Trieste, 1990)", World Sci. Publ., River Edge, NJ (1991) 373
,[2] Metric spaces of non-positive curvature
, ,[3] Infinite Coxeter groups do not have Kazhdan's property, J. Operator Theory 19 (1988) 63
, , ,[4] Buildings are $\mathrm{CAT}(0)$, from: "Geometry and cohomology in group theory (Durham, 1994)", London Math. Soc. Lecture Note Ser. 252, Cambridge Univ. Press (1998) 108
,[5] Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75
,[6] La propriété $(T)$ de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque (1989) 158
, ,[7] Coxeter groups act on $\mathrm{CAT}(0)$ cube complexes, J. Group Theory 6 (2003) 399
, ,[8] Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. $(3)$ 71 (1995) 585
,Cité par Sources :