Groups acting on CAT(0) cube complexes
Geometry & topology, Tome 1 (1997) no. 1, pp. 1-7.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that groups satisfying Kazhdan’s property (T) have no unbounded actions on finite dimensional CAT(0) cube complexes, and deduce that there is a locally CAT(1) Riemannian manifold which is not homotopy equivalent to any finite dimensional, locally CAT(0) cube complex.

DOI : 10.2140/gt.1997.1.1
Keywords: Kazhdan's property (T), Tits' buildings, hyperbolic geometry, CAT(0) cube complexes, locally CAT(-1) spaces, $Sp(n,1)$–manifolds

Niblo, Graham A 1 ; Reeves, Lawrence 2

1 Faculty of Mathematical Studies, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
2 Institute of Mathematics, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
@article{GT_1997_1_1_a0,
     author = {Niblo, Graham A and Reeves, Lawrence},
     title = {Groups acting on {CAT(0)} cube complexes},
     journal = {Geometry & topology},
     pages = {1--7},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1997},
     doi = {10.2140/gt.1997.1.1},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1997.1.1/}
}
TY  - JOUR
AU  - Niblo, Graham A
AU  - Reeves, Lawrence
TI  - Groups acting on CAT(0) cube complexes
JO  - Geometry & topology
PY  - 1997
SP  - 1
EP  - 7
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.1997.1.1/
DO  - 10.2140/gt.1997.1.1
ID  - GT_1997_1_1_a0
ER  - 
%0 Journal Article
%A Niblo, Graham A
%A Reeves, Lawrence
%T Groups acting on CAT(0) cube complexes
%J Geometry & topology
%D 1997
%P 1-7
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.1997.1.1/
%R 10.2140/gt.1997.1.1
%F GT_1997_1_1_a0
Niblo, Graham A; Reeves, Lawrence. Groups acting on CAT(0) cube complexes. Geometry & topology, Tome 1 (1997) no. 1, pp. 1-7. doi : 10.2140/gt.1997.1.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.1997.1.1/

[1] M R Bridson, Geodesics and curvature in metric simplicial complexes, from: "Group theory from a geometrical viewpoint (Trieste, 1990)", World Sci. Publ., River Edge, NJ (1991) 373

[2] M R Bridson, A Haefliger, Metric spaces of non-positive curvature

[3] M Bożejko, T Januszkiewicz, R J Spatzier, Infinite Coxeter groups do not have Kazhdan's property, J. Operator Theory 19 (1988) 63

[4] M W Davis, Buildings are $\mathrm{CAT}(0)$, from: "Geometry and cohomology in group theory (Durham, 1994)", London Math. Soc. Lecture Note Ser. 252, Cambridge Univ. Press (1998) 108

[5] M Gromov, Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[6] P De La Harpe, A Valette, La propriété $(T)$ de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque (1989) 158

[7] G A Niblo, L D Reeves, Coxeter groups act on $\mathrm{CAT}(0)$ cube complexes, J. Group Theory 6 (2003) 399

[8] M Sageev, Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. $(3)$ 71 (1995) 585

Cité par Sources :