Embedding calculus for surfaces
Algebraic and Geometric Topology, Tome 24 (2024) no. 2, pp. 981-1018
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove convergence of the Goodwillie–Weiss embedding calculus for spaces of embeddings into a manifold of dimension at most two, so in particular for diffeomorphisms between surfaces. We also relate the Johnson filtration of the mapping class group of a surface to a certain filtration arising from embedding calculus.
Keywords:
embedding calculus, manifold calculus, surfaces, mapping
class group, Johnson filtration
Affiliations des auteurs :
Krannich, Manuel 1 ; Kupers, Alexander 2
@article{10_2140_agt_2024_24_981,
author = {Krannich, Manuel and Kupers, Alexander},
title = {Embedding calculus for surfaces},
journal = {Algebraic and Geometric Topology},
pages = {981--1018},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2024},
doi = {10.2140/agt.2024.24.981},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.981/}
}
TY - JOUR AU - Krannich, Manuel AU - Kupers, Alexander TI - Embedding calculus for surfaces JO - Algebraic and Geometric Topology PY - 2024 SP - 981 EP - 1018 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.981/ DO - 10.2140/agt.2024.24.981 ID - 10_2140_agt_2024_24_981 ER -
Krannich, Manuel; Kupers, Alexander. Embedding calculus for surfaces. Algebraic and Geometric Topology, Tome 24 (2024) no. 2, pp. 981-1018. doi: 10.2140/agt.2024.24.981
Cité par Sources :