Embedding calculus for surfaces
Algebraic and Geometric Topology, Tome 24 (2024) no. 2, pp. 981-1018

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove convergence of the Goodwillie–Weiss embedding calculus for spaces of embeddings into a manifold of dimension at most two, so in particular for diffeomorphisms between surfaces. We also relate the Johnson filtration of the mapping class group of a surface to a certain filtration arising from embedding calculus.

DOI : 10.2140/agt.2024.24.981
Keywords: embedding calculus, manifold calculus, surfaces, mapping class group, Johnson filtration

Krannich, Manuel 1 ; Kupers, Alexander 2

1 Department of Mathematics, Karlsruhe Institute of Technology, Karlsruhe, Germany
2 Department of Mathematics, University of Toronto, Toronto, ON, Canada
@article{10_2140_agt_2024_24_981,
     author = {Krannich, Manuel and Kupers, Alexander},
     title = {Embedding calculus for surfaces},
     journal = {Algebraic and Geometric Topology},
     pages = {981--1018},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2024},
     doi = {10.2140/agt.2024.24.981},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.981/}
}
TY  - JOUR
AU  - Krannich, Manuel
AU  - Kupers, Alexander
TI  - Embedding calculus for surfaces
JO  - Algebraic and Geometric Topology
PY  - 2024
SP  - 981
EP  - 1018
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.981/
DO  - 10.2140/agt.2024.24.981
ID  - 10_2140_agt_2024_24_981
ER  - 
%0 Journal Article
%A Krannich, Manuel
%A Kupers, Alexander
%T Embedding calculus for surfaces
%J Algebraic and Geometric Topology
%D 2024
%P 981-1018
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.981/
%R 10.2140/agt.2024.24.981
%F 10_2140_agt_2024_24_981
Krannich, Manuel; Kupers, Alexander. Embedding calculus for surfaces. Algebraic and Geometric Topology, Tome 24 (2024) no. 2, pp. 981-1018. doi: 10.2140/agt.2024.24.981

Cité par Sources :