Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We determine when certain natural classes of subgroups of right-angled Coxeter groups (RACGs) and right-angled Artin groups (RAAGs) are themselves RAAGs. We characterize finite-index visual RAAG subgroups of 2–dimensional RACGs. As an application, we show that any 2–dimensional, one-ended RACG with planar defining graph is quasi-isometric to a RAAG if and only if it is commensurable to a RAAG. Additionally, we give new examples of RACGs with nonplanar defining graphs which are commensurable to RAAGs.
Finally, we give a new proof of a result of Dyer: every subgroup generated by conjugates of RAAG generators is itself a RAAG.
Dani, Pallavi 1 ; Levcovitz, Ivan 2
@article{10_2140_agt_2024_24_755,
author = {Dani, Pallavi and Levcovitz, Ivan},
title = {Right-angled {Artin} subgroups of right-angled {Coxeter} and {Artin} groups},
journal = {Algebraic and Geometric Topology},
pages = {755--802},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2024},
doi = {10.2140/agt.2024.24.755},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.755/}
}
TY - JOUR AU - Dani, Pallavi AU - Levcovitz, Ivan TI - Right-angled Artin subgroups of right-angled Coxeter and Artin groups JO - Algebraic and Geometric Topology PY - 2024 SP - 755 EP - 802 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.755/ DO - 10.2140/agt.2024.24.755 ID - 10_2140_agt_2024_24_755 ER -
%0 Journal Article %A Dani, Pallavi %A Levcovitz, Ivan %T Right-angled Artin subgroups of right-angled Coxeter and Artin groups %J Algebraic and Geometric Topology %D 2024 %P 755-802 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.755/ %R 10.2140/agt.2024.24.755 %F 10_2140_agt_2024_24_755
Dani, Pallavi; Levcovitz, Ivan. Right-angled Artin subgroups of right-angled Coxeter and Artin groups. Algebraic and Geometric Topology, Tome 24 (2024) no. 2, pp. 755-802. doi: 10.2140/agt.2024.24.755
Cité par Sources :