A strong Haken theorem
Algebraic and Geometric Topology, Tome 24 (2024) no. 2, pp. 717-753

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Suppose M = A ∪TB is a Heegaard split compact orientable 3–manifold and S ⊂ M is a reducing sphere for M. Haken (1968) showed that there is then also a reducing sphere S∗ for the Heegaard splitting. Casson and Gordon (1987) extended the result to ∂–reducing disks in M and noted that in both cases S∗ is obtained from S by a sequence of operations called 1–surgeries. Here we show that in fact one may take S∗ = S.

DOI : 10.2140/agt.2024.24.717
Keywords: Heegaard splitting, compression body, reducing disks and spheres

Scharlemann, Martin 1

1 Department of Mathematics, University of California, Santa Barbara, Santa Barbara, CA, United States
@article{10_2140_agt_2024_24_717,
     author = {Scharlemann, Martin},
     title = {A strong {Haken} theorem},
     journal = {Algebraic and Geometric Topology},
     pages = {717--753},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2024},
     doi = {10.2140/agt.2024.24.717},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.717/}
}
TY  - JOUR
AU  - Scharlemann, Martin
TI  - A strong Haken theorem
JO  - Algebraic and Geometric Topology
PY  - 2024
SP  - 717
EP  - 753
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.717/
DO  - 10.2140/agt.2024.24.717
ID  - 10_2140_agt_2024_24_717
ER  - 
%0 Journal Article
%A Scharlemann, Martin
%T A strong Haken theorem
%J Algebraic and Geometric Topology
%D 2024
%P 717-753
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.717/
%R 10.2140/agt.2024.24.717
%F 10_2140_agt_2024_24_717
Scharlemann, Martin. A strong Haken theorem. Algebraic and Geometric Topology, Tome 24 (2024) no. 2, pp. 717-753. doi: 10.2140/agt.2024.24.717

Cité par Sources :