Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We compare two combinatorial models for the moduli space of two-dimensional cobordisms (namely Bödigheimer’s radial slit configurations and Godin’s admissible fat graphs), using a “critical graph” map to produce an explicit homotopy equivalence. We also discuss natural compactifications of these two models, the unilevel harmonic compactification and Sullivan diagrams, respectively, and prove that the homotopy equivalence induces a cellular homeomorphism between these compactifications.
Keywords: moduli space, string topology, field theories
Egas Santander, Daniela 1 ; Kupers, Alexander 2
@article{10_2140_agt_2024_24_595,
author = {Egas Santander, Daniela and Kupers, Alexander},
title = {Comparing combinatorial models of moduli space and their compactifications},
journal = {Algebraic and Geometric Topology},
pages = {595--654},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2024},
doi = {10.2140/agt.2024.24.595},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.595/}
}
TY - JOUR AU - Egas Santander, Daniela AU - Kupers, Alexander TI - Comparing combinatorial models of moduli space and their compactifications JO - Algebraic and Geometric Topology PY - 2024 SP - 595 EP - 654 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.595/ DO - 10.2140/agt.2024.24.595 ID - 10_2140_agt_2024_24_595 ER -
%0 Journal Article %A Egas Santander, Daniela %A Kupers, Alexander %T Comparing combinatorial models of moduli space and their compactifications %J Algebraic and Geometric Topology %D 2024 %P 595-654 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.595/ %R 10.2140/agt.2024.24.595 %F 10_2140_agt_2024_24_595
Egas Santander, Daniela; Kupers, Alexander. Comparing combinatorial models of moduli space and their compactifications. Algebraic and Geometric Topology, Tome 24 (2024) no. 2, pp. 595-654. doi: 10.2140/agt.2024.24.595
Cité par Sources :