Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We introduce the notion of mixed subtree quasi-isometries, which are self-quasi-isometries of regular trees built in a specific inductive way. We then show that any self-quasi-isometry of a regular tree is at bounded distance from a mixed-subtree quasi-isometry. Since the free group is quasi-isometric to a regular tree, this provides a way to describe all self-quasi-isometries of the free group. In doing this, we also give a way of constructing quasi-isometries of the free group.
Goldsborough, Antoine 1 ; Zbinden, Stefanie 1
@article{10_2140_agt_2024_24_5211,
author = {Goldsborough, Antoine and Zbinden, Stefanie},
title = {Characterising quasi-isometries of the free group},
journal = {Algebraic and Geometric Topology},
pages = {5211--5219},
publisher = {mathdoc},
volume = {24},
number = {9},
year = {2024},
doi = {10.2140/agt.2024.24.5211},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.5211/}
}
TY - JOUR AU - Goldsborough, Antoine AU - Zbinden, Stefanie TI - Characterising quasi-isometries of the free group JO - Algebraic and Geometric Topology PY - 2024 SP - 5211 EP - 5219 VL - 24 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.5211/ DO - 10.2140/agt.2024.24.5211 ID - 10_2140_agt_2024_24_5211 ER -
%0 Journal Article %A Goldsborough, Antoine %A Zbinden, Stefanie %T Characterising quasi-isometries of the free group %J Algebraic and Geometric Topology %D 2024 %P 5211-5219 %V 24 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.5211/ %R 10.2140/agt.2024.24.5211 %F 10_2140_agt_2024_24_5211
Goldsborough, Antoine; Zbinden, Stefanie. Characterising quasi-isometries of the free group. Algebraic and Geometric Topology, Tome 24 (2024) no. 9, pp. 5211-5219. doi: 10.2140/agt.2024.24.5211
Cité par Sources :