On the invariance of the Dowlin spectral sequence
Algebraic and Geometric Topology, Tome 24 (2024) no. 9, pp. 5123-5159

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a link L, Dowlin constructed a filtered complex inducing a spectral sequence with E2–page isomorphic to the Khovanov homology Kh ⁡ ¯(L) and E∞–page isomorphic to the knot Floer homology HFK^(m(L)) of the mirror of the link. We prove that the Ek–page of this spectral sequence is also a link invariant, for k ≥ 3.

DOI : 10.2140/agt.2024.24.5123
Keywords: Khovanov homology, knot Floer homology, knot theory, spectral sequence, invariants

Tripp, Samuel 1 ; Winkeler, Zachary 2

1 Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA, United States
2 Clark Science Center, Smith College, Northampton, MA, United States
@article{10_2140_agt_2024_24_5123,
     author = {Tripp, Samuel and Winkeler, Zachary},
     title = {On the invariance of the {Dowlin} spectral sequence},
     journal = {Algebraic and Geometric Topology},
     pages = {5123--5159},
     publisher = {mathdoc},
     volume = {24},
     number = {9},
     year = {2024},
     doi = {10.2140/agt.2024.24.5123},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.5123/}
}
TY  - JOUR
AU  - Tripp, Samuel
AU  - Winkeler, Zachary
TI  - On the invariance of the Dowlin spectral sequence
JO  - Algebraic and Geometric Topology
PY  - 2024
SP  - 5123
EP  - 5159
VL  - 24
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.5123/
DO  - 10.2140/agt.2024.24.5123
ID  - 10_2140_agt_2024_24_5123
ER  - 
%0 Journal Article
%A Tripp, Samuel
%A Winkeler, Zachary
%T On the invariance of the Dowlin spectral sequence
%J Algebraic and Geometric Topology
%D 2024
%P 5123-5159
%V 24
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.5123/
%R 10.2140/agt.2024.24.5123
%F 10_2140_agt_2024_24_5123
Tripp, Samuel; Winkeler, Zachary. On the invariance of the Dowlin spectral sequence. Algebraic and Geometric Topology, Tome 24 (2024) no. 9, pp. 5123-5159. doi: 10.2140/agt.2024.24.5123

Cité par Sources :