On the invariance of the Dowlin spectral sequence
Algebraic and Geometric Topology, Tome 24 (2024) no. 9, pp. 5123-5159
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a link L, Dowlin constructed a filtered complex inducing a spectral sequence with E2–page isomorphic to the Khovanov homology Kh ¯(L) and E∞–page isomorphic to the knot Floer homology HFK^(m(L)) of the mirror of the link. We prove that the Ek–page of this spectral sequence is also a link invariant, for k ≥ 3.
Keywords:
Khovanov homology, knot Floer homology, knot theory,
spectral sequence, invariants
Affiliations des auteurs :
Tripp, Samuel 1 ; Winkeler, Zachary 2
@article{10_2140_agt_2024_24_5123,
author = {Tripp, Samuel and Winkeler, Zachary},
title = {On the invariance of the {Dowlin} spectral sequence},
journal = {Algebraic and Geometric Topology},
pages = {5123--5159},
publisher = {mathdoc},
volume = {24},
number = {9},
year = {2024},
doi = {10.2140/agt.2024.24.5123},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.5123/}
}
TY - JOUR AU - Tripp, Samuel AU - Winkeler, Zachary TI - On the invariance of the Dowlin spectral sequence JO - Algebraic and Geometric Topology PY - 2024 SP - 5123 EP - 5159 VL - 24 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.5123/ DO - 10.2140/agt.2024.24.5123 ID - 10_2140_agt_2024_24_5123 ER -
%0 Journal Article %A Tripp, Samuel %A Winkeler, Zachary %T On the invariance of the Dowlin spectral sequence %J Algebraic and Geometric Topology %D 2024 %P 5123-5159 %V 24 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.5123/ %R 10.2140/agt.2024.24.5123 %F 10_2140_agt_2024_24_5123
Tripp, Samuel; Winkeler, Zachary. On the invariance of the Dowlin spectral sequence. Algebraic and Geometric Topology, Tome 24 (2024) no. 9, pp. 5123-5159. doi: 10.2140/agt.2024.24.5123
Cité par Sources :