Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We develop an equivariant version of Seiberg–Witten–Floer cohomology for finite group actions on rational homology 3–spheres. Our construction is based on an equivariant version of the Seiberg–Witten–Floer stable homotopy type, as constructed by Manolescu. We use these equivariant cohomology groups to define a series of d–invariants dG,c(Y,𝔰) which are indexed by the group cohomology of G. These invariants satisfy a Frøyshov-type inequality under equivariant cobordisms. Lastly, we consider a variety of applications of these d–invariants: concordance invariants of knots via branched covers, obstructions to extending group actions over bounding 4–manifolds, Nielsen realisation problems for 4–manifolds with boundary and obstructions to equivariant embeddings of 3–manifolds in 4–manifolds.
Baraglia, David 1 ; Hekmati, Pedram 2
@article{10_2140_agt_2024_24_493,
author = {Baraglia, David and Hekmati, Pedram},
title = {Equivariant {Seiberg{\textendash}Witten{\textendash}Floer} cohomology},
journal = {Algebraic and Geometric Topology},
pages = {493--554},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {2024},
doi = {10.2140/agt.2024.24.493},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.493/}
}
TY - JOUR AU - Baraglia, David AU - Hekmati, Pedram TI - Equivariant Seiberg–Witten–Floer cohomology JO - Algebraic and Geometric Topology PY - 2024 SP - 493 EP - 554 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.493/ DO - 10.2140/agt.2024.24.493 ID - 10_2140_agt_2024_24_493 ER -
Baraglia, David; Hekmati, Pedram. Equivariant Seiberg–Witten–Floer cohomology. Algebraic and Geometric Topology, Tome 24 (2024) no. 1, pp. 493-554. doi: 10.2140/agt.2024.24.493
Cité par Sources :