Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We investigate implications of an old conjecture in unstable homotopy theory related to the Cohen–Moore–Neisendorfer theorem and a conjecture about the E[2]–topological Hochschild cohomology of certain Thom spectra (denoted by A, B and T(n)) related to Ravenel’s X(pn). We show that these conjectures imply that the orientations MSpin → bo and MString → tmf admit spectrum-level splittings. This is shown by generalizing a theorem of Hopkins and Mahowald, which constructs HFp as a Thom spectrum, to construct BP 〈n − 1〉, bo, and tmf as Thom spectra (albeit over T(n), A, and B“, respectively, and not over the sphere). This interpretation of BP 〈n − 1〉, bo, and tmf offers a new perspective on Wood equivalences of the form bo ∧ Cη ≃ bu: they are related to the existence of certain EHP sequences in unstable homotopy theory. This construction of BP 〈n − 1〉 also provides a different lens on the nilpotence theorem. Finally, we prove a C2–equivariant analogue of our construction, describing HZ ¯ as a Thom spectrum.
Devalapurkar, Sanath K 1
@article{10_2140_agt_2024_24_49,
author = {Devalapurkar, Sanath K},
title = {Higher chromatic {Thom} spectra via unstable homotopy theory},
journal = {Algebraic and Geometric Topology},
pages = {49--108},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {2024},
doi = {10.2140/agt.2024.24.49},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.49/}
}
TY - JOUR AU - Devalapurkar, Sanath K TI - Higher chromatic Thom spectra via unstable homotopy theory JO - Algebraic and Geometric Topology PY - 2024 SP - 49 EP - 108 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.49/ DO - 10.2140/agt.2024.24.49 ID - 10_2140_agt_2024_24_49 ER -
Devalapurkar, Sanath K. Higher chromatic Thom spectra via unstable homotopy theory. Algebraic and Geometric Topology, Tome 24 (2024) no. 1, pp. 49-108. doi: 10.2140/agt.2024.24.49
Cité par Sources :