Tame and relatively elliptic ℂℙ1–structures on the thrice-punctured sphere
Algebraic and Geometric Topology, Tome 24 (2024) no. 8, pp. 4589-4650

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Suppose a relatively elliptic representation ρ of the fundamental group of the thrice-punctured sphere S is given. We prove that all projective structures on S with holonomy ρ and satisfying a tameness condition at the punctures can be obtained by grafting certain circular triangles. The specific collection of triangles is determined by a natural framing of ρ. In the process, we show that (on a general surface Σ of negative Euler characteristics) structures satisfying these conditions can be characterized in terms of their Möbius completion, and in terms of certain meromorphic quadratic differentials.

DOI : 10.2140/agt.2024.24.4589
Keywords: complex projective structure, configuration of circles, grafting, Möbius completion, quadratic differential, relatively elliptic representation, triangle group

Ballas, Samuel A 1 ; Bowers, Philip L 1 ; Casella, Alex 1 ; Ruffoni, Lorenzo 2

1 Department of Mathematics, Florida State University, Tallahassee, FL, United States
2 Department of Mathematics, Tufts University, Medford, MA, United States
@article{10_2140_agt_2024_24_4589,
     author = {Ballas, Samuel A and Bowers, Philip L and Casella, Alex and Ruffoni, Lorenzo},
     title = {Tame and relatively elliptic {\ensuremath{\mathbb{C}}\ensuremath{\mathbb{P}}1{\textendash}structures} on the thrice-punctured sphere},
     journal = {Algebraic and Geometric Topology},
     pages = {4589--4650},
     publisher = {mathdoc},
     volume = {24},
     number = {8},
     year = {2024},
     doi = {10.2140/agt.2024.24.4589},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.4589/}
}
TY  - JOUR
AU  - Ballas, Samuel A
AU  - Bowers, Philip L
AU  - Casella, Alex
AU  - Ruffoni, Lorenzo
TI  - Tame and relatively elliptic ℂℙ1–structures on the thrice-punctured sphere
JO  - Algebraic and Geometric Topology
PY  - 2024
SP  - 4589
EP  - 4650
VL  - 24
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.4589/
DO  - 10.2140/agt.2024.24.4589
ID  - 10_2140_agt_2024_24_4589
ER  - 
%0 Journal Article
%A Ballas, Samuel A
%A Bowers, Philip L
%A Casella, Alex
%A Ruffoni, Lorenzo
%T Tame and relatively elliptic ℂℙ1–structures on the thrice-punctured sphere
%J Algebraic and Geometric Topology
%D 2024
%P 4589-4650
%V 24
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.4589/
%R 10.2140/agt.2024.24.4589
%F 10_2140_agt_2024_24_4589
Ballas, Samuel A; Bowers, Philip L; Casella, Alex; Ruffoni, Lorenzo. Tame and relatively elliptic ℂℙ1–structures on the thrice-punctured sphere. Algebraic and Geometric Topology, Tome 24 (2024) no. 8, pp. 4589-4650. doi: 10.2140/agt.2024.24.4589

Cité par Sources :