Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We extend Ravenel–Wilson Hopf ring techniques to C2–equivariant homotopy theory. Our main application and motivation is a computation of the RO(C2)–graded homology of C2–equivariant Eilenberg–Mac Lane spaces. The result we obtain for C2–equivariant Eilenberg–Mac Lane spaces associated to the constant Mackey functor 𝔽¯2 gives a C2–equivariant analogue of the classical computation due to Serre. We also investigate a twisted bar spectral sequence computing the homology of these equivariant Eilenberg–Mac Lane spaces and suggest the existence of another twisted bar spectral sequence with E2–page given in terms of a twisted Tor functor.
Petersen, Sarah 1
@article{10_2140_agt_2024_24_4487,
author = {Petersen, Sarah},
title = {The {H\ensuremath{\mathbb{F}}2{\textendash}homology} of {C2{\textendash}equivariant} {Eilenberg{\textendash}Mac} {Lane} spaces},
journal = {Algebraic and Geometric Topology},
pages = {4487--4518},
publisher = {mathdoc},
volume = {24},
number = {8},
year = {2024},
doi = {10.2140/agt.2024.24.4487},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.4487/}
}
TY - JOUR AU - Petersen, Sarah TI - The H𝔽2–homology of C2–equivariant Eilenberg–Mac Lane spaces JO - Algebraic and Geometric Topology PY - 2024 SP - 4487 EP - 4518 VL - 24 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.4487/ DO - 10.2140/agt.2024.24.4487 ID - 10_2140_agt_2024_24_4487 ER -
%0 Journal Article %A Petersen, Sarah %T The H𝔽2–homology of C2–equivariant Eilenberg–Mac Lane spaces %J Algebraic and Geometric Topology %D 2024 %P 4487-4518 %V 24 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.4487/ %R 10.2140/agt.2024.24.4487 %F 10_2140_agt_2024_24_4487
Petersen, Sarah. The H𝔽2–homology of C2–equivariant Eilenberg–Mac Lane spaces. Algebraic and Geometric Topology, Tome 24 (2024) no. 8, pp. 4487-4518. doi: 10.2140/agt.2024.24.4487
Cité par Sources :