Strong topological rigidity of noncompact orientable surfaces
Algebraic and Geometric Topology, Tome 24 (2024) no. 8, pp. 4423-4469
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that every orientable infinite-type surface is properly rigid as a consequence of a more general result. Namely, we prove that if a homotopy equivalence between any two noncompact orientable surfaces is a proper map, then it is properly homotopic to a homeomorphism, provided the surfaces are neither the plane nor the punctured plane. Thus all noncompact orientable surfaces, except the plane and the punctured plane, are topologically rigid in a strong sense.
Keywords:
topological rigidity, infinite-type surfaces,
Dehn–Nielsen–Baer theorem
Affiliations des auteurs :
Das, Sumanta 1
@article{10_2140_agt_2024_24_4423,
author = {Das, Sumanta},
title = {Strong topological rigidity of noncompact orientable surfaces},
journal = {Algebraic and Geometric Topology},
pages = {4423--4469},
publisher = {mathdoc},
volume = {24},
number = {8},
year = {2024},
doi = {10.2140/agt.2024.24.4423},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.4423/}
}
TY - JOUR AU - Das, Sumanta TI - Strong topological rigidity of noncompact orientable surfaces JO - Algebraic and Geometric Topology PY - 2024 SP - 4423 EP - 4469 VL - 24 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.4423/ DO - 10.2140/agt.2024.24.4423 ID - 10_2140_agt_2024_24_4423 ER -
Das, Sumanta. Strong topological rigidity of noncompact orientable surfaces. Algebraic and Geometric Topology, Tome 24 (2024) no. 8, pp. 4423-4469. doi: 10.2140/agt.2024.24.4423
Cité par Sources :