Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We discuss the Mayer–Vietoris spectral sequence as an invariant in the context of persistent homology. In particular, we introduce the notion of 𝜀–acyclic carriers and 𝜀–acyclic equivalences between filtered regular CW–complexes and study stability conditions for the associated spectral sequences. We also look at the Mayer–Vietoris blowup complex and the geometric realization, finding stability properties under compatible noise; as a result we prove a version of an approximate nerve theorem. Adapting work by Serre, we find conditions under which 𝜀–interleavings exist between the spectral sequences associated to two different covers.
Torras-Casas, Álvaro 1 ; Pennig, Ulrich 1
@article{10_2140_agt_2024_24_4265,
author = {Torras-Casas, \'Alvaro and Pennig, Ulrich},
title = {Interleaving {Mayer{\textendash}Vietoris} spectral sequences},
journal = {Algebraic and Geometric Topology},
pages = {4265--4306},
publisher = {mathdoc},
volume = {24},
number = {8},
year = {2024},
doi = {10.2140/agt.2024.24.4265},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.4265/}
}
TY - JOUR AU - Torras-Casas, Álvaro AU - Pennig, Ulrich TI - Interleaving Mayer–Vietoris spectral sequences JO - Algebraic and Geometric Topology PY - 2024 SP - 4265 EP - 4306 VL - 24 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.4265/ DO - 10.2140/agt.2024.24.4265 ID - 10_2140_agt_2024_24_4265 ER -
%0 Journal Article %A Torras-Casas, Álvaro %A Pennig, Ulrich %T Interleaving Mayer–Vietoris spectral sequences %J Algebraic and Geometric Topology %D 2024 %P 4265-4306 %V 24 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.4265/ %R 10.2140/agt.2024.24.4265 %F 10_2140_agt_2024_24_4265
Torras-Casas, Álvaro; Pennig, Ulrich. Interleaving Mayer–Vietoris spectral sequences. Algebraic and Geometric Topology, Tome 24 (2024) no. 8, pp. 4265-4306. doi: 10.2140/agt.2024.24.4265
Cité par Sources :