Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given Lagrangian (real, complex) projective spaces K1,… ,Km in a Liouville manifold (X,ω) satisfying a certain cohomological condition, we show there is a Lagrangian correspondence (in the sense of Wehrheim and Woodward (2012)) that assigns a Lagrangian sphere Li ⊂ K of another Liouville manifold (Y,Ω) to any given projective Lagrangian Ki ⊂ X for i = 1,… ,m.
We use the Hopf correspondence to study projective twists, a class of symplectomorphisms akin to Dehn twists, but defined starting from Lagrangian projective spaces. When this correspondence can be established, we show that it intertwines the autoequivalences of the compact Fukaya category ℱuk (X) induced by the projective twists τKi ∈ π0(Symp ct (X)) with the autoequivalences of ℱuk (Y ) induced by the Dehn twists τLi ∈ π0(Symp ct (Y )) for i = 1,… ,m.
Using the Hopf correspondence, we obtain a free generation result for projective twists in a clean plumbing of projective spaces and various results about products of positive powers of Dehn/projective twists in Liouville manifolds.
The same techniques are also used to show that the Hamiltonian isotopy class of the projective twist (along the zero section in T∗ℂℙn) in Symp ct (T∗ℂℙn) does depend on a choice of framing for n ≥ 19. Another application of the Hopf correspondence delivers smooth homotopy complex projective spaces K ≃ ℂℙn that do not admit Lagrangian embeddings into (T∗ℂℙn,dλℂℙn) for n = 4,7.
Torricelli, Brunella Charlotte 1
@article{10_2140_agt_2024_24_4139,
author = {Torricelli, Brunella Charlotte},
title = {Projective twists and the {Hopf} correspondence},
journal = {Algebraic and Geometric Topology},
pages = {4139--4200},
publisher = {mathdoc},
volume = {24},
number = {8},
year = {2024},
doi = {10.2140/agt.2024.24.4139},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.4139/}
}
TY - JOUR AU - Torricelli, Brunella Charlotte TI - Projective twists and the Hopf correspondence JO - Algebraic and Geometric Topology PY - 2024 SP - 4139 EP - 4200 VL - 24 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.4139/ DO - 10.2140/agt.2024.24.4139 ID - 10_2140_agt_2024_24_4139 ER -
%0 Journal Article %A Torricelli, Brunella Charlotte %T Projective twists and the Hopf correspondence %J Algebraic and Geometric Topology %D 2024 %P 4139-4200 %V 24 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.4139/ %R 10.2140/agt.2024.24.4139 %F 10_2140_agt_2024_24_4139
Torricelli, Brunella Charlotte. Projective twists and the Hopf correspondence. Algebraic and Geometric Topology, Tome 24 (2024) no. 8, pp. 4139-4200. doi: 10.2140/agt.2024.24.4139
Cité par Sources :