Fourier transforms and integer homology cobordism
Algebraic and Geometric Topology, Tome 24 (2024) no. 7, pp. 4085-4101

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We explore the Fourier transform of the d–invariants, which is particularly well behaved with respect to connected sum. As corollaries, we show that lens spaces are cancellable in the monoid of 3–manifolds up to integer homology cobordism, and we recover a theorem of González-Acuña and Short on Alexander polynomials of knots with reducible surgeries.

DOI : 10.2140/agt.2024.24.4085
Keywords: lens spaces, homology cobordism, Fourier transform, Reidemeister torsion, $d$–invariant, Heegaard Floer homology

Miller Eismeier, Mike 1

1 Department of Mathematics and Statistics, University of Vermont, Burlington, VT, United States
@article{10_2140_agt_2024_24_4085,
     author = {Miller Eismeier, Mike},
     title = {Fourier transforms and integer homology cobordism},
     journal = {Algebraic and Geometric Topology},
     pages = {4085--4101},
     publisher = {mathdoc},
     volume = {24},
     number = {7},
     year = {2024},
     doi = {10.2140/agt.2024.24.4085},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.4085/}
}
TY  - JOUR
AU  - Miller Eismeier, Mike
TI  - Fourier transforms and integer homology cobordism
JO  - Algebraic and Geometric Topology
PY  - 2024
SP  - 4085
EP  - 4101
VL  - 24
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.4085/
DO  - 10.2140/agt.2024.24.4085
ID  - 10_2140_agt_2024_24_4085
ER  - 
%0 Journal Article
%A Miller Eismeier, Mike
%T Fourier transforms and integer homology cobordism
%J Algebraic and Geometric Topology
%D 2024
%P 4085-4101
%V 24
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.4085/
%R 10.2140/agt.2024.24.4085
%F 10_2140_agt_2024_24_4085
Miller Eismeier, Mike. Fourier transforms and integer homology cobordism. Algebraic and Geometric Topology, Tome 24 (2024) no. 7, pp. 4085-4101. doi: 10.2140/agt.2024.24.4085

Cité par Sources :