Fourier transforms and integer homology cobordism
Algebraic and Geometric Topology, Tome 24 (2024) no. 7, pp. 4085-4101
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We explore the Fourier transform of the d–invariants, which is particularly well behaved with respect to connected sum. As corollaries, we show that lens spaces are cancellable in the monoid of 3–manifolds up to integer homology cobordism, and we recover a theorem of González-Acuña and Short on Alexander polynomials of knots with reducible surgeries.
Keywords:
lens spaces, homology cobordism, Fourier transform,
Reidemeister torsion, $d$–invariant, Heegaard Floer
homology
Affiliations des auteurs :
Miller Eismeier, Mike 1
@article{10_2140_agt_2024_24_4085,
author = {Miller Eismeier, Mike},
title = {Fourier transforms and integer homology cobordism},
journal = {Algebraic and Geometric Topology},
pages = {4085--4101},
publisher = {mathdoc},
volume = {24},
number = {7},
year = {2024},
doi = {10.2140/agt.2024.24.4085},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.4085/}
}
TY - JOUR AU - Miller Eismeier, Mike TI - Fourier transforms and integer homology cobordism JO - Algebraic and Geometric Topology PY - 2024 SP - 4085 EP - 4101 VL - 24 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.4085/ DO - 10.2140/agt.2024.24.4085 ID - 10_2140_agt_2024_24_4085 ER -
Miller Eismeier, Mike. Fourier transforms and integer homology cobordism. Algebraic and Geometric Topology, Tome 24 (2024) no. 7, pp. 4085-4101. doi: 10.2140/agt.2024.24.4085
Cité par Sources :