Smallest nonabelian quotients of surface braid groups
Algebraic and Geometric Topology, Tome 24 (2024) no. 7, pp. 3997-4006

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give a sharp lower bound on the size of nonabelian quotients of the surface braid group Bn(Σg) and classify all quotients that attain the lower bound: depending on n and g, a quotient of minimum order is either a symmetric group or a 2–step nilpotent p–group.

DOI : 10.2140/agt.2024.24.3997
Keywords: surface braid groups, configuration spaces, just nilpotent groups, extraspecial groups

Tan, Cindy 1

1 Department of Mathematics, University of Chicago, Chicago, IL, United States
@article{10_2140_agt_2024_24_3997,
     author = {Tan, Cindy},
     title = {Smallest nonabelian quotients of surface braid groups},
     journal = {Algebraic and Geometric Topology},
     pages = {3997--4006},
     publisher = {mathdoc},
     volume = {24},
     number = {7},
     year = {2024},
     doi = {10.2140/agt.2024.24.3997},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3997/}
}
TY  - JOUR
AU  - Tan, Cindy
TI  - Smallest nonabelian quotients of surface braid groups
JO  - Algebraic and Geometric Topology
PY  - 2024
SP  - 3997
EP  - 4006
VL  - 24
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3997/
DO  - 10.2140/agt.2024.24.3997
ID  - 10_2140_agt_2024_24_3997
ER  - 
%0 Journal Article
%A Tan, Cindy
%T Smallest nonabelian quotients of surface braid groups
%J Algebraic and Geometric Topology
%D 2024
%P 3997-4006
%V 24
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3997/
%R 10.2140/agt.2024.24.3997
%F 10_2140_agt_2024_24_3997
Tan, Cindy. Smallest nonabelian quotients of surface braid groups. Algebraic and Geometric Topology, Tome 24 (2024) no. 7, pp. 3997-4006. doi: 10.2140/agt.2024.24.3997

Cité par Sources :