Smallest nonabelian quotients of surface braid groups
Algebraic and Geometric Topology, Tome 24 (2024) no. 7, pp. 3997-4006
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We give a sharp lower bound on the size of nonabelian quotients of the surface braid group Bn(Σg) and classify all quotients that attain the lower bound: depending on n and g, a quotient of minimum order is either a symmetric group or a 2–step nilpotent p–group.
Keywords:
surface braid groups, configuration spaces, just nilpotent
groups, extraspecial groups
Affiliations des auteurs :
Tan, Cindy 1
@article{10_2140_agt_2024_24_3997,
author = {Tan, Cindy},
title = {Smallest nonabelian quotients of surface braid groups},
journal = {Algebraic and Geometric Topology},
pages = {3997--4006},
publisher = {mathdoc},
volume = {24},
number = {7},
year = {2024},
doi = {10.2140/agt.2024.24.3997},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3997/}
}
TY - JOUR AU - Tan, Cindy TI - Smallest nonabelian quotients of surface braid groups JO - Algebraic and Geometric Topology PY - 2024 SP - 3997 EP - 4006 VL - 24 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3997/ DO - 10.2140/agt.2024.24.3997 ID - 10_2140_agt_2024_24_3997 ER -
Tan, Cindy. Smallest nonabelian quotients of surface braid groups. Algebraic and Geometric Topology, Tome 24 (2024) no. 7, pp. 3997-4006. doi: 10.2140/agt.2024.24.3997
Cité par Sources :