A closed ball compactification of a maximal component via cores of trees
Algebraic and Geometric Topology, Tome 24 (2024) no. 7, pp. 3693-3717

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that, in the character variety of surface group representations into the Lie group PSL ⁡ (2, ℝ) × PSL ⁡ (2, ℝ), the compactification of the maximal component introduced by the second author is a closed ball upon which the mapping class group acts. We study the dynamics of this action. Finally, we describe the boundary points geometrically as ( A1×A1 ¯,2)–valued mixed structures.

DOI : 10.2140/agt.2024.24.3693
Keywords: harmonic maps, hyperbolic surfaces, Teichmüller theory, $\mathbb{R}$–trees, quadratic differentials

Martone, Giuseppe 1 ; Ouyang, Charles 2 ; Tamburelli, Andrea 3

1 Department of Mathematics and Statistics, Sam Houston State University, Huntsville, TX, United States
2 Department of Mathematics, Washington University, St Louis, MO, United States
3 Department of Mathematics, University of Pisa, Pisa, Italy
@article{10_2140_agt_2024_24_3693,
     author = {Martone, Giuseppe and Ouyang, Charles and Tamburelli, Andrea},
     title = {A closed ball compactification of a maximal component via cores of trees},
     journal = {Algebraic and Geometric Topology},
     pages = {3693--3717},
     publisher = {mathdoc},
     volume = {24},
     number = {7},
     year = {2024},
     doi = {10.2140/agt.2024.24.3693},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3693/}
}
TY  - JOUR
AU  - Martone, Giuseppe
AU  - Ouyang, Charles
AU  - Tamburelli, Andrea
TI  - A closed ball compactification of a maximal component via cores of trees
JO  - Algebraic and Geometric Topology
PY  - 2024
SP  - 3693
EP  - 3717
VL  - 24
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3693/
DO  - 10.2140/agt.2024.24.3693
ID  - 10_2140_agt_2024_24_3693
ER  - 
%0 Journal Article
%A Martone, Giuseppe
%A Ouyang, Charles
%A Tamburelli, Andrea
%T A closed ball compactification of a maximal component via cores of trees
%J Algebraic and Geometric Topology
%D 2024
%P 3693-3717
%V 24
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3693/
%R 10.2140/agt.2024.24.3693
%F 10_2140_agt_2024_24_3693
Martone, Giuseppe; Ouyang, Charles; Tamburelli, Andrea. A closed ball compactification of a maximal component via cores of trees. Algebraic and Geometric Topology, Tome 24 (2024) no. 7, pp. 3693-3717. doi: 10.2140/agt.2024.24.3693

Cité par Sources :