A closed ball compactification of a maximal component via cores of trees
Algebraic and Geometric Topology, Tome 24 (2024) no. 7, pp. 3693-3717
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that, in the character variety of surface group representations into the Lie group PSL (2, ℝ) × PSL (2, ℝ), the compactification of the maximal component introduced by the second author is a closed ball upon which the mapping class group acts. We study the dynamics of this action. Finally, we describe the boundary points geometrically as ( A1×A1 ¯,2)–valued mixed structures.
Keywords:
harmonic maps, hyperbolic surfaces, Teichmüller theory,
$\mathbb{R}$–trees, quadratic differentials
Affiliations des auteurs :
Martone, Giuseppe 1 ; Ouyang, Charles 2 ; Tamburelli, Andrea 3
@article{10_2140_agt_2024_24_3693,
author = {Martone, Giuseppe and Ouyang, Charles and Tamburelli, Andrea},
title = {A closed ball compactification of a maximal component via cores of trees},
journal = {Algebraic and Geometric Topology},
pages = {3693--3717},
publisher = {mathdoc},
volume = {24},
number = {7},
year = {2024},
doi = {10.2140/agt.2024.24.3693},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3693/}
}
TY - JOUR AU - Martone, Giuseppe AU - Ouyang, Charles AU - Tamburelli, Andrea TI - A closed ball compactification of a maximal component via cores of trees JO - Algebraic and Geometric Topology PY - 2024 SP - 3693 EP - 3717 VL - 24 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3693/ DO - 10.2140/agt.2024.24.3693 ID - 10_2140_agt_2024_24_3693 ER -
%0 Journal Article %A Martone, Giuseppe %A Ouyang, Charles %A Tamburelli, Andrea %T A closed ball compactification of a maximal component via cores of trees %J Algebraic and Geometric Topology %D 2024 %P 3693-3717 %V 24 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3693/ %R 10.2140/agt.2024.24.3693 %F 10_2140_agt_2024_24_3693
Martone, Giuseppe; Ouyang, Charles; Tamburelli, Andrea. A closed ball compactification of a maximal component via cores of trees. Algebraic and Geometric Topology, Tome 24 (2024) no. 7, pp. 3693-3717. doi: 10.2140/agt.2024.24.3693
Cité par Sources :