The Heisenberg double of involutory Hopf algebras and invariants of closed 3–manifolds
Algebraic and Geometric Topology, Tome 24 (2024) no. 7, pp. 3669-3691

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct an invariant of closed oriented 3–manifolds using a finite-dimensional involutory unimodular and counimodular Hopf algebra H. We use the framework of normal o–graphs introduced by R Benedetti and C Petronio, in which one can represent a branched ideal triangulation via an oriented virtual knot diagram. We assign a copy of the canonical element of the Heisenberg double ℋ(H) of H to each real crossing, which represents a branched ideal tetrahedron. The invariant takes values in the cyclic quotient ℋ(H)∕[ℋ(H),ℋ(H)], which is isomorphic to the base field. In the construction we use only the canonical element and structure constants of H, and not any representations of H. This, together with the finiteness and locality conditions of the moves for normal o–graphs, makes the calculation of our invariant rather simple and easy to understand. When H is the group algebra of a finite group, the invariant counts the number of group homomorphisms from the fundamental group of the 3–manifold to the group.

DOI : 10.2140/agt.2024.24.3669
Keywords: invariants of $3$–manifolds, Hopf algebras, Heisenberg doubles

Mihalache, Serban Matei 1 ; Suzuki, Sakie 2 ; Terashima, Yuji 1

1 Department of Mathematics, Tohoku University, Sendai, Japan
2 Department of Mathematical and Computing Science, Tokyo Institute of Technology, Tokyo, Japan
@article{10_2140_agt_2024_24_3669,
     author = {Mihalache, Serban Matei and Suzuki, Sakie and Terashima, Yuji},
     title = {The {Heisenberg} double of involutory {Hopf} algebras and invariants of closed 3{\textendash}manifolds},
     journal = {Algebraic and Geometric Topology},
     pages = {3669--3691},
     publisher = {mathdoc},
     volume = {24},
     number = {7},
     year = {2024},
     doi = {10.2140/agt.2024.24.3669},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3669/}
}
TY  - JOUR
AU  - Mihalache, Serban Matei
AU  - Suzuki, Sakie
AU  - Terashima, Yuji
TI  - The Heisenberg double of involutory Hopf algebras and invariants of closed 3–manifolds
JO  - Algebraic and Geometric Topology
PY  - 2024
SP  - 3669
EP  - 3691
VL  - 24
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3669/
DO  - 10.2140/agt.2024.24.3669
ID  - 10_2140_agt_2024_24_3669
ER  - 
%0 Journal Article
%A Mihalache, Serban Matei
%A Suzuki, Sakie
%A Terashima, Yuji
%T The Heisenberg double of involutory Hopf algebras and invariants of closed 3–manifolds
%J Algebraic and Geometric Topology
%D 2024
%P 3669-3691
%V 24
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3669/
%R 10.2140/agt.2024.24.3669
%F 10_2140_agt_2024_24_3669
Mihalache, Serban Matei; Suzuki, Sakie; Terashima, Yuji. The Heisenberg double of involutory Hopf algebras and invariants of closed 3–manifolds. Algebraic and Geometric Topology, Tome 24 (2024) no. 7, pp. 3669-3691. doi: 10.2140/agt.2024.24.3669

Cité par Sources :