Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We construct an invariant of closed oriented 3–manifolds using a finite-dimensional involutory unimodular and counimodular Hopf algebra H. We use the framework of normal o–graphs introduced by R Benedetti and C Petronio, in which one can represent a branched ideal triangulation via an oriented virtual knot diagram. We assign a copy of the canonical element of the Heisenberg double ℋ(H) of H to each real crossing, which represents a branched ideal tetrahedron. The invariant takes values in the cyclic quotient ℋ(H)∕[ℋ(H),ℋ(H)], which is isomorphic to the base field. In the construction we use only the canonical element and structure constants of H, and not any representations of H. This, together with the finiteness and locality conditions of the moves for normal o–graphs, makes the calculation of our invariant rather simple and easy to understand. When H is the group algebra of a finite group, the invariant counts the number of group homomorphisms from the fundamental group of the 3–manifold to the group.
Mihalache, Serban Matei 1 ; Suzuki, Sakie 2 ; Terashima, Yuji 1
@article{10_2140_agt_2024_24_3669,
     author = {Mihalache, Serban Matei and Suzuki, Sakie and Terashima, Yuji},
     title = {The {Heisenberg} double of involutory {Hopf} algebras and invariants of closed 3{\textendash}manifolds},
     journal = {Algebraic and Geometric Topology},
     pages = {3669--3691},
     publisher = {mathdoc},
     volume = {24},
     number = {7},
     year = {2024},
     doi = {10.2140/agt.2024.24.3669},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3669/}
}
                      
                      
                    TY - JOUR AU - Mihalache, Serban Matei AU - Suzuki, Sakie AU - Terashima, Yuji TI - The Heisenberg double of involutory Hopf algebras and invariants of closed 3–manifolds JO - Algebraic and Geometric Topology PY - 2024 SP - 3669 EP - 3691 VL - 24 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3669/ DO - 10.2140/agt.2024.24.3669 ID - 10_2140_agt_2024_24_3669 ER -
%0 Journal Article %A Mihalache, Serban Matei %A Suzuki, Sakie %A Terashima, Yuji %T The Heisenberg double of involutory Hopf algebras and invariants of closed 3–manifolds %J Algebraic and Geometric Topology %D 2024 %P 3669-3691 %V 24 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3669/ %R 10.2140/agt.2024.24.3669 %F 10_2140_agt_2024_24_3669
Mihalache, Serban Matei; Suzuki, Sakie; Terashima, Yuji. The Heisenberg double of involutory Hopf algebras and invariants of closed 3–manifolds. Algebraic and Geometric Topology, Tome 24 (2024) no. 7, pp. 3669-3691. doi: 10.2140/agt.2024.24.3669
Cité par Sources :