Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that the deformation space of geodesic triangulations of a flat torus is homotopically equivalent to a torus. This solves an open problem proposed by Connelly et al. in 1983 in the case of flat tori. A key tool of the proof is a generalization of Tutte’s embedding theorem for flat tori. While this paper was under preparation, Erickson and Lin proved a similar result, which works for all convex drawings.
Luo, Yanwen 1 ; Wu, Tianqi 2 ; Zhu, Xiaoping 1
@article{10_2140_agt_2024_24_3605,
author = {Luo, Yanwen and Wu, Tianqi and Zhu, Xiaoping},
title = {The deformation spaces of geodesic triangulations of flat tori},
journal = {Algebraic and Geometric Topology},
pages = {3605--3620},
publisher = {mathdoc},
volume = {24},
number = {7},
year = {2024},
doi = {10.2140/agt.2024.24.3605},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3605/}
}
TY - JOUR AU - Luo, Yanwen AU - Wu, Tianqi AU - Zhu, Xiaoping TI - The deformation spaces of geodesic triangulations of flat tori JO - Algebraic and Geometric Topology PY - 2024 SP - 3605 EP - 3620 VL - 24 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3605/ DO - 10.2140/agt.2024.24.3605 ID - 10_2140_agt_2024_24_3605 ER -
%0 Journal Article %A Luo, Yanwen %A Wu, Tianqi %A Zhu, Xiaoping %T The deformation spaces of geodesic triangulations of flat tori %J Algebraic and Geometric Topology %D 2024 %P 3605-3620 %V 24 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3605/ %R 10.2140/agt.2024.24.3605 %F 10_2140_agt_2024_24_3605
Luo, Yanwen; Wu, Tianqi; Zhu, Xiaoping. The deformation spaces of geodesic triangulations of flat tori. Algebraic and Geometric Topology, Tome 24 (2024) no. 7, pp. 3605-3620. doi: 10.2140/agt.2024.24.3605
Cité par Sources :