The homology of a Temperley–Lieb algebra on an odd number of strands
Algebraic and Geometric Topology, Tome 24 (2024) no. 6, pp. 3527-3541
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that the homology of any Temperley–Lieb algebra 𝒯ℒn(a) on an odd number of strands vanishes in positive degrees. This improves a result obtained by Boyd and Hepworth. In addition, we present alternative arguments for two vanishing results of Boyd and Hepworth: the stable homology of Temperley–Lieb algebras is trivial, and if the parameter a ∈ R is a unit, then the homology of any Temperley–Lieb algebra is concentrated in degree zero.
Keywords:
homology, homological stability, Temperley–Lieb algebra
Affiliations des auteurs :
Sroka, Robin J 1
@article{10_2140_agt_2024_24_3527,
author = {Sroka, Robin J},
title = {The homology of a {Temperley{\textendash}Lieb} algebra on an odd number of strands},
journal = {Algebraic and Geometric Topology},
pages = {3527--3541},
publisher = {mathdoc},
volume = {24},
number = {6},
year = {2024},
doi = {10.2140/agt.2024.24.3527},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3527/}
}
TY - JOUR AU - Sroka, Robin J TI - The homology of a Temperley–Lieb algebra on an odd number of strands JO - Algebraic and Geometric Topology PY - 2024 SP - 3527 EP - 3541 VL - 24 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3527/ DO - 10.2140/agt.2024.24.3527 ID - 10_2140_agt_2024_24_3527 ER -
%0 Journal Article %A Sroka, Robin J %T The homology of a Temperley–Lieb algebra on an odd number of strands %J Algebraic and Geometric Topology %D 2024 %P 3527-3541 %V 24 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3527/ %R 10.2140/agt.2024.24.3527 %F 10_2140_agt_2024_24_3527
Sroka, Robin J. The homology of a Temperley–Lieb algebra on an odd number of strands. Algebraic and Geometric Topology, Tome 24 (2024) no. 6, pp. 3527-3541. doi: 10.2140/agt.2024.24.3527
Cité par Sources :