Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Building upon Hovey’s work on Smith ideals for monoids, we develop a homotopy theory of Smith ideals for general operads in a symmetric monoidal category. For a sufficiently nice stable monoidal model category and an operad satisfying a cofibrancy condition, we show that there is a Quillen equivalence between a model structure on Smith ideals and a model structure on algebra morphisms induced by the cokernel and the kernel. For symmetric spectra, this applies to the commutative operad and all Σ–cofibrant operads. For chain complexes over a field of characteristic zero and the stable module category, this Quillen equivalence holds for all operads. We end with a comparison between the semi-model category approach and the ∞–category approach to encoding the homotopy theory of algebras over Σ–cofibrant operads that are not necessarily admissible.
White, David 1 ; Yau, Donald 2
@article{10_2140_agt_2024_24_341,
author = {White, David and Yau, Donald},
title = {Smith ideals of operadic algebras in monoidal model categories},
journal = {Algebraic and Geometric Topology},
pages = {341--392},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {2024},
doi = {10.2140/agt.2024.24.341},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.341/}
}
TY - JOUR AU - White, David AU - Yau, Donald TI - Smith ideals of operadic algebras in monoidal model categories JO - Algebraic and Geometric Topology PY - 2024 SP - 341 EP - 392 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.341/ DO - 10.2140/agt.2024.24.341 ID - 10_2140_agt_2024_24_341 ER -
%0 Journal Article %A White, David %A Yau, Donald %T Smith ideals of operadic algebras in monoidal model categories %J Algebraic and Geometric Topology %D 2024 %P 341-392 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.341/ %R 10.2140/agt.2024.24.341 %F 10_2140_agt_2024_24_341
White, David; Yau, Donald. Smith ideals of operadic algebras in monoidal model categories. Algebraic and Geometric Topology, Tome 24 (2024) no. 1, pp. 341-392. doi: 10.2140/agt.2024.24.341
Cité par Sources :