Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that the local equivalence class of the collapsed link Floer complex cCFL∞(L), together with many Υ–type invariants extracted from this group, is a concordance invariant of links. In particular, we define a version of the invariants ΥL(t) and ν+(L) when L is a link and we prove that they give a lower bound for the slice genus g4(L).
Furthermore, in the last section of the paper we study the homology group HFL′(L) and its behavior under unoriented cobordisms. We obtain that a normalized version of the υ–set, introduced by Ozsváth, Stipsicz and Szabó, produces a lower bound for the 4–dimensional smooth crosscap number γ4(L).
Cavallo, Alberto 1
@article{10_2140_agt_2024_24_3235,
author = {Cavallo, Alberto},
title = {Locally equivalent {Floer} complexes and unoriented link cobordisms},
journal = {Algebraic and Geometric Topology},
pages = {3235--3290},
publisher = {mathdoc},
volume = {24},
number = {6},
year = {2024},
doi = {10.2140/agt.2024.24.3235},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3235/}
}
TY - JOUR AU - Cavallo, Alberto TI - Locally equivalent Floer complexes and unoriented link cobordisms JO - Algebraic and Geometric Topology PY - 2024 SP - 3235 EP - 3290 VL - 24 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3235/ DO - 10.2140/agt.2024.24.3235 ID - 10_2140_agt_2024_24_3235 ER -
%0 Journal Article %A Cavallo, Alberto %T Locally equivalent Floer complexes and unoriented link cobordisms %J Algebraic and Geometric Topology %D 2024 %P 3235-3290 %V 24 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3235/ %R 10.2140/agt.2024.24.3235 %F 10_2140_agt_2024_24_3235
Cavallo, Alberto. Locally equivalent Floer complexes and unoriented link cobordisms. Algebraic and Geometric Topology, Tome 24 (2024) no. 6, pp. 3235-3290. doi: 10.2140/agt.2024.24.3235
Cité par Sources :