Algebraic and Giroux torsion in higher-dimensional contact manifolds
Algebraic and Geometric Topology, Tome 24 (2024) no. 6, pp. 3199-3234

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct examples in any odd dimension of contact manifolds with finite and nonzero algebraic torsion (in the sense of Latschev and Wendl (2011)), which are therefore tight and do not admit strong symplectic fillings. We prove that Giroux torsion implies algebraic 1–torsion in any odd dimension, which proves a conjecture of Massot, Niederkrüger and Wendl (2013). These results are part of the author’s PhD thesis.

DOI : 10.2140/agt.2024.24.3199
Keywords: contact manifolds, symplectic manifolds, symplectic field theory, holomorphic curves

Moreno, Agustin 1

1 Institute for Advanced Study, Princeton, NJ, United States
@article{10_2140_agt_2024_24_3199,
     author = {Moreno, Agustin},
     title = {Algebraic and {Giroux} torsion in higher-dimensional contact manifolds},
     journal = {Algebraic and Geometric Topology},
     pages = {3199--3234},
     publisher = {mathdoc},
     volume = {24},
     number = {6},
     year = {2024},
     doi = {10.2140/agt.2024.24.3199},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3199/}
}
TY  - JOUR
AU  - Moreno, Agustin
TI  - Algebraic and Giroux torsion in higher-dimensional contact manifolds
JO  - Algebraic and Geometric Topology
PY  - 2024
SP  - 3199
EP  - 3234
VL  - 24
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3199/
DO  - 10.2140/agt.2024.24.3199
ID  - 10_2140_agt_2024_24_3199
ER  - 
%0 Journal Article
%A Moreno, Agustin
%T Algebraic and Giroux torsion in higher-dimensional contact manifolds
%J Algebraic and Geometric Topology
%D 2024
%P 3199-3234
%V 24
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3199/
%R 10.2140/agt.2024.24.3199
%F 10_2140_agt_2024_24_3199
Moreno, Agustin. Algebraic and Giroux torsion in higher-dimensional contact manifolds. Algebraic and Geometric Topology, Tome 24 (2024) no. 6, pp. 3199-3234. doi: 10.2140/agt.2024.24.3199

Cité par Sources :