Homotopy types of suspended 4–manifolds
Algebraic and Geometric Topology, Tome 24 (2024) no. 5, pp. 2933-2956
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a closed, smooth, connected, orientable 4–manifold M whose integral homology groups can have 2–torsion, we determine the homotopy decomposition of the double suspension Σ2M as wedge sums of some elementary A33–complexes which are 2–connected finite complexes of dimension at most 6. Furthermore, we utilize the Postnikov square (or equivalently Pontryagin square) to find sufficient conditions for the homotopy decompositions of Σ2M to desuspend to that of ΣM.
Keywords:
homotopy type, suspension, four-manifolds,
$\mathbf{A}_3^3$–complexes
Affiliations des auteurs :
Li, Pengcheng 1
@article{10_2140_agt_2024_24_2933,
author = {Li, Pengcheng},
title = {Homotopy types of suspended 4{\textendash}manifolds},
journal = {Algebraic and Geometric Topology},
pages = {2933--2956},
publisher = {mathdoc},
volume = {24},
number = {5},
year = {2024},
doi = {10.2140/agt.2024.24.2933},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.2933/}
}
TY - JOUR AU - Li, Pengcheng TI - Homotopy types of suspended 4–manifolds JO - Algebraic and Geometric Topology PY - 2024 SP - 2933 EP - 2956 VL - 24 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.2933/ DO - 10.2140/agt.2024.24.2933 ID - 10_2140_agt_2024_24_2933 ER -
Li, Pengcheng. Homotopy types of suspended 4–manifolds. Algebraic and Geometric Topology, Tome 24 (2024) no. 5, pp. 2933-2956. doi: 10.2140/agt.2024.24.2933
Cité par Sources :