A simple proof of the Crowell–Murasugi theorem
Algebraic and Geometric Topology, Tome 24 (2024) no. 5, pp. 2779-2785
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We give an elementary, self-contained proof of the theorem, proven independently in 1958–1959 by Crowell and Murasugi, that the genus of any oriented nonsplit alternating link equals half the breadth of its Alexander polynomial (with a correction term for the number of link components), and that applying Seifert’s algorithm to any oriented connected alternating link diagram gives a surface of minimal genus.
Keywords:
Seifert surface, Alexander polynomial, alternating link,
alternating knot, Murasugi sum, plumbing, fiber surface,
de-plumbing, knot genus, link genus, 3–genus, Seifert's
algorithm, homogeneous link
Affiliations des auteurs :
Kindred, Thomas 1
@article{10_2140_agt_2024_24_2779,
author = {Kindred, Thomas},
title = {A simple proof of the {Crowell{\textendash}Murasugi} theorem},
journal = {Algebraic and Geometric Topology},
pages = {2779--2785},
publisher = {mathdoc},
volume = {24},
number = {5},
year = {2024},
doi = {10.2140/agt.2024.24.2779},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.2779/}
}
TY - JOUR AU - Kindred, Thomas TI - A simple proof of the Crowell–Murasugi theorem JO - Algebraic and Geometric Topology PY - 2024 SP - 2779 EP - 2785 VL - 24 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.2779/ DO - 10.2140/agt.2024.24.2779 ID - 10_2140_agt_2024_24_2779 ER -
Kindred, Thomas. A simple proof of the Crowell–Murasugi theorem. Algebraic and Geometric Topology, Tome 24 (2024) no. 5, pp. 2779-2785. doi: 10.2140/agt.2024.24.2779
Cité par Sources :