What are GT–shadows ?
Algebraic and Geometric Topology, Tome 24 (2024) no. 5, pp. 2721-2777

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let B ⁡ 4 (resp.  PB ⁡ 4) be the braid group (resp. the pure braid group) on 4 strands and NFIPB ⁡ 4(B ⁡ 4) be the poset whose elements are finite-index normal subgroups N of B ⁡ 4 that are contained in PB ⁡ 4. We introduce GT–shadows, which may be thought of as “approximations” to elements of the profinite version GT^ of the Grothendieck–Teichmüller group (Drinfeld 1991). We prove that GT–shadows form a groupoid whose objects are elements of the underlying set NFIPB ⁡ 4(B ⁡ 4). GT–shadows coming from elements of GT^ satisfy various additional properties and we investigate these properties. We establish an explicit link between GT–shadows and the group GT^. Selected results of computer experiments on GT–shadows are presented. In the appendix we give a complete description of GT–shadows in the abelian setting. We also prove that, in the abelian setting, every GT–shadow comes from an element of GT^. Objects very similar to GT–shadows were introduced by D Harbater and L Schneps (1997). A variation of the concept of GT–shadows for the gentle version of GT^ was studied by P Guillot (2016 and 2018).

DOI : 10.2140/agt.2024.24.2721
Keywords: Grothendieck–Teichmueller group, operads, braid groups, the absolute Galois group of rational numbers

Dolgushev, Vasily A 1 ; Le, Khanh Q 2 ; Lorenz, Aidan A 3

1 Department of Mathematics, Temple University, Philadelphia, PA, United States
2 Department of Mathematics, Rice University, Houston, TX, United States
3 Department of Mathematics, Vanderbilt University, Nashville, TN, United States
@article{10_2140_agt_2024_24_2721,
     author = {Dolgushev, Vasily A and Le, Khanh Q and Lorenz, Aidan A},
     title = {What are {GT{\textendash}shadows} ?},
     journal = {Algebraic and Geometric Topology},
     pages = {2721--2777},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2024},
     doi = {10.2140/agt.2024.24.2721},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.2721/}
}
TY  - JOUR
AU  - Dolgushev, Vasily A
AU  - Le, Khanh Q
AU  - Lorenz, Aidan A
TI  - What are GT–shadows ?
JO  - Algebraic and Geometric Topology
PY  - 2024
SP  - 2721
EP  - 2777
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.2721/
DO  - 10.2140/agt.2024.24.2721
ID  - 10_2140_agt_2024_24_2721
ER  - 
%0 Journal Article
%A Dolgushev, Vasily A
%A Le, Khanh Q
%A Lorenz, Aidan A
%T What are GT–shadows ?
%J Algebraic and Geometric Topology
%D 2024
%P 2721-2777
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.2721/
%R 10.2140/agt.2024.24.2721
%F 10_2140_agt_2024_24_2721
Dolgushev, Vasily A; Le, Khanh Q; Lorenz, Aidan A. What are GT–shadows ?. Algebraic and Geometric Topology, Tome 24 (2024) no. 5, pp. 2721-2777. doi: 10.2140/agt.2024.24.2721

Cité par Sources :