Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let B 4 (resp. PB 4) be the braid group (resp. the pure braid group) on 4 strands and NFIPB 4(B 4) be the poset whose elements are finite-index normal subgroups N of B 4 that are contained in PB 4. We introduce GT–shadows, which may be thought of as “approximations” to elements of the profinite version GT^ of the Grothendieck–Teichmüller group (Drinfeld 1991). We prove that GT–shadows form a groupoid whose objects are elements of the underlying set NFIPB 4(B 4). GT–shadows coming from elements of GT^ satisfy various additional properties and we investigate these properties. We establish an explicit link between GT–shadows and the group GT^. Selected results of computer experiments on GT–shadows are presented. In the appendix we give a complete description of GT–shadows in the abelian setting. We also prove that, in the abelian setting, every GT–shadow comes from an element of GT^. Objects very similar to GT–shadows were introduced by D Harbater and L Schneps (1997). A variation of the concept of GT–shadows for the gentle version of GT^ was studied by P Guillot (2016 and 2018).
Dolgushev, Vasily A 1 ; Le, Khanh Q 2 ; Lorenz, Aidan A 3
@article{10_2140_agt_2024_24_2721,
author = {Dolgushev, Vasily A and Le, Khanh Q and Lorenz, Aidan A},
title = {What are {GT{\textendash}shadows} ?},
journal = {Algebraic and Geometric Topology},
pages = {2721--2777},
publisher = {mathdoc},
volume = {24},
number = {5},
year = {2024},
doi = {10.2140/agt.2024.24.2721},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.2721/}
}
TY - JOUR AU - Dolgushev, Vasily A AU - Le, Khanh Q AU - Lorenz, Aidan A TI - What are GT–shadows ? JO - Algebraic and Geometric Topology PY - 2024 SP - 2721 EP - 2777 VL - 24 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.2721/ DO - 10.2140/agt.2024.24.2721 ID - 10_2140_agt_2024_24_2721 ER -
%0 Journal Article %A Dolgushev, Vasily A %A Le, Khanh Q %A Lorenz, Aidan A %T What are GT–shadows ? %J Algebraic and Geometric Topology %D 2024 %P 2721-2777 %V 24 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.2721/ %R 10.2140/agt.2024.24.2721 %F 10_2140_agt_2024_24_2721
Dolgushev, Vasily A; Le, Khanh Q; Lorenz, Aidan A. What are GT–shadows ?. Algebraic and Geometric Topology, Tome 24 (2024) no. 5, pp. 2721-2777. doi: 10.2140/agt.2024.24.2721
Cité par Sources :