Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We consider transfer maps on ordinary homology, bordism of singular spaces and homology with coefficients in Ranicki’s symmetric L–spectrum, associated to block bundles with closed oriented PL manifold fiber and compact polyhedral base. We prove that if the base polyhedron is a Witt space, for example a pure-dimensional compact complex algebraic variety, then the symmetric L–homology orientation of the base, constructed by Laures, McClure and the author, transfers to the L–homology orientation of the total space. We deduce from this that the Cheeger–Goresky–MacPherson L–class of the base transfers to the product of the L–class of the total space with the cohomological L–class of the stable vertical normal microbundle.
Banagl, Markus 1
@article{10_2140_agt_2024_24_2579,
author = {Banagl, Markus},
title = {Bundle transfer of {L{\textendash}homology} orientation classes for singular spaces},
journal = {Algebraic and Geometric Topology},
pages = {2579--2618},
publisher = {mathdoc},
volume = {24},
number = {5},
year = {2024},
doi = {10.2140/agt.2024.24.2579},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.2579/}
}
TY - JOUR AU - Banagl, Markus TI - Bundle transfer of L–homology orientation classes for singular spaces JO - Algebraic and Geometric Topology PY - 2024 SP - 2579 EP - 2618 VL - 24 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.2579/ DO - 10.2140/agt.2024.24.2579 ID - 10_2140_agt_2024_24_2579 ER -
%0 Journal Article %A Banagl, Markus %T Bundle transfer of L–homology orientation classes for singular spaces %J Algebraic and Geometric Topology %D 2024 %P 2579-2618 %V 24 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.2579/ %R 10.2140/agt.2024.24.2579 %F 10_2140_agt_2024_24_2579
Banagl, Markus. Bundle transfer of L–homology orientation classes for singular spaces. Algebraic and Geometric Topology, Tome 24 (2024) no. 5, pp. 2579-2618. doi: 10.2140/agt.2024.24.2579
Cité par Sources :