Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We compute the topological Hochschild homology of sufficiently structured forms of truncated Brown–Peterson spectra with coefficients. In particular, we compute THH ∗(B〈n〉;Hℤ(p)) for all n, where B〈n〉 is an E3 form of BP 〈n〉 for certain primes p, and THH ∗(B〈2〉;M) for M ∈{k(1),k(2)}. For example, this gives a computation of THH (taf D;M) for M ∈{Hℤ(3),k(1),k(2)} where taf D is the E∞ form of BP 〈2〉 constructed by Hill and Lawson.
Angelini-Knoll, Gabriel 1 ; Culver, Dominic Leon 2 ; Höning, Eva 3
@article{10_2140_agt_2024_24_2509,
author = {Angelini-Knoll, Gabriel and Culver, Dominic Leon and H\"oning, Eva},
title = {Topological {Hochschild} homology of truncated {Brown{\textendash}Peterson} spectra, {I}},
journal = {Algebraic and Geometric Topology},
pages = {2509--2536},
publisher = {mathdoc},
volume = {24},
number = {5},
year = {2024},
doi = {10.2140/agt.2024.24.2509},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.2509/}
}
TY - JOUR AU - Angelini-Knoll, Gabriel AU - Culver, Dominic Leon AU - Höning, Eva TI - Topological Hochschild homology of truncated Brown–Peterson spectra, I JO - Algebraic and Geometric Topology PY - 2024 SP - 2509 EP - 2536 VL - 24 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.2509/ DO - 10.2140/agt.2024.24.2509 ID - 10_2140_agt_2024_24_2509 ER -
%0 Journal Article %A Angelini-Knoll, Gabriel %A Culver, Dominic Leon %A Höning, Eva %T Topological Hochschild homology of truncated Brown–Peterson spectra, I %J Algebraic and Geometric Topology %D 2024 %P 2509-2536 %V 24 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.2509/ %R 10.2140/agt.2024.24.2509 %F 10_2140_agt_2024_24_2509
Angelini-Knoll, Gabriel; Culver, Dominic Leon; Höning, Eva. Topological Hochschild homology of truncated Brown–Peterson spectra, I. Algebraic and Geometric Topology, Tome 24 (2024) no. 5, pp. 2509-2536. doi: 10.2140/agt.2024.24.2509
Cité par Sources :