Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
One interpretation of Bézout’s theorem, nonequivariantly, is as a calculation of the Euler class of a sum of line bundles over complex projective space, expressing it in terms of the rank of the bundle and its degree. We generalize this calculation to the C2–equivariant context, using the calculation of the cohomology of C2–complex projective spaces from an earlier paper, which used ordinary C2–cohomology with Burnside ring coefficients and an extended grading necessary to define the Euler class. We express the Euler class in terms of the equivariant rank of the bundle and the degrees of the bundle and its fixed subbundles. We do similar calculations using constant ℤ coefficients and Borel cohomology and compare the results.
Costenoble, Steven R 1 ; Hudson, Thomas 2 ; Tilson, Sean 3
@article{10_2140_agt_2024_24_2331,
author = {Costenoble, Steven R and Hudson, Thomas and Tilson, Sean},
title = {An algebraic {C2{\textendash}equivariant} {B\'ezout} theorem},
journal = {Algebraic and Geometric Topology},
pages = {2331--2350},
publisher = {mathdoc},
volume = {24},
number = {4},
year = {2024},
doi = {10.2140/agt.2024.24.2331},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.2331/}
}
TY - JOUR AU - Costenoble, Steven R AU - Hudson, Thomas AU - Tilson, Sean TI - An algebraic C2–equivariant Bézout theorem JO - Algebraic and Geometric Topology PY - 2024 SP - 2331 EP - 2350 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.2331/ DO - 10.2140/agt.2024.24.2331 ID - 10_2140_agt_2024_24_2331 ER -
%0 Journal Article %A Costenoble, Steven R %A Hudson, Thomas %A Tilson, Sean %T An algebraic C2–equivariant Bézout theorem %J Algebraic and Geometric Topology %D 2024 %P 2331-2350 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.2331/ %R 10.2140/agt.2024.24.2331 %F 10_2140_agt_2024_24_2331
Costenoble, Steven R; Hudson, Thomas; Tilson, Sean. An algebraic C2–equivariant Bézout theorem. Algebraic and Geometric Topology, Tome 24 (2024) no. 4, pp. 2331-2350. doi: 10.2140/agt.2024.24.2331
Cité par Sources :