Commensurators of thin normal subgroups and abelian quotients
Algebraic and Geometric Topology, Tome 24 (2024) no. 4, pp. 2149-2170

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give an affirmative answer to many cases of a question due to Shalom, which asks if the commensurator of a thin subgroup of a Lie group is discrete. Let K < Γ < G be an infinite normal subgroup of an arithmetic lattice Γ in a rank-one simple Lie group G, such that the quotient Q = Γ∕K is infinite. We show that the commensurator of K in G is discrete, provided that Q admits a surjective homomorphism to ℤ. In this case, we also show that the commensurator of K contains the normalizer of K with finite index. We thus vastly generalize a 2021 result of the authors, which showed that many natural normal subgroups of PSL ⁡ 2(ℤ) have discrete commensurator in PSL ⁡ 2(ℝ).

DOI : 10.2140/agt.2024.24.2149
Keywords: commensurator, Hodge theory, coarse preservation of lines, arithmetic lattice, thin subgroup

Koberda, Thomas 1 ; Mj, Mahan 2

1 Department of Mathematics, University of Virginia, Charlottesville, VA, United States
2 School of Mathematics, Tata Institute of Fundamental Research, Mumbai, India
@article{10_2140_agt_2024_24_2149,
     author = {Koberda, Thomas and Mj, Mahan},
     title = {Commensurators of thin normal subgroups and abelian quotients},
     journal = {Algebraic and Geometric Topology},
     pages = {2149--2170},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2024},
     doi = {10.2140/agt.2024.24.2149},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.2149/}
}
TY  - JOUR
AU  - Koberda, Thomas
AU  - Mj, Mahan
TI  - Commensurators of thin normal subgroups and abelian quotients
JO  - Algebraic and Geometric Topology
PY  - 2024
SP  - 2149
EP  - 2170
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.2149/
DO  - 10.2140/agt.2024.24.2149
ID  - 10_2140_agt_2024_24_2149
ER  - 
%0 Journal Article
%A Koberda, Thomas
%A Mj, Mahan
%T Commensurators of thin normal subgroups and abelian quotients
%J Algebraic and Geometric Topology
%D 2024
%P 2149-2170
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.2149/
%R 10.2140/agt.2024.24.2149
%F 10_2140_agt_2024_24_2149
Koberda, Thomas; Mj, Mahan. Commensurators of thin normal subgroups and abelian quotients. Algebraic and Geometric Topology, Tome 24 (2024) no. 4, pp. 2149-2170. doi: 10.2140/agt.2024.24.2149

Cité par Sources :