Möbius structures, quasimetrics and completeness
Algebraic and Geometric Topology, Tome 24 (2024) no. 4, pp. 1809-1840

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study cross ratios from an axiomatic viewpoint, also known as the study of Möbius spaces. We characterise cross ratios induced by quasimetrics in terms of topological properties of their image. Furthermore, we generalise the notions of Cauchy sequences and completeness to Möbius spaces and prove the existence of a unique completion under an extra assumption that, again, can be expressed in terms of the image of the cross ratio.

DOI : 10.2140/agt.2024.24.1809
Keywords: cross ratio, quasimetrics, topology

Incerti-Medici, Merlin 1

1 Fakultät für Mathematik, Karlsruher Institut für Technologie, Karlsruhe, Germany
@article{10_2140_agt_2024_24_1809,
     author = {Incerti-Medici, Merlin},
     title = {M\"obius structures, quasimetrics and completeness},
     journal = {Algebraic and Geometric Topology},
     pages = {1809--1840},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2024},
     doi = {10.2140/agt.2024.24.1809},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.1809/}
}
TY  - JOUR
AU  - Incerti-Medici, Merlin
TI  - Möbius structures, quasimetrics and completeness
JO  - Algebraic and Geometric Topology
PY  - 2024
SP  - 1809
EP  - 1840
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.1809/
DO  - 10.2140/agt.2024.24.1809
ID  - 10_2140_agt_2024_24_1809
ER  - 
%0 Journal Article
%A Incerti-Medici, Merlin
%T Möbius structures, quasimetrics and completeness
%J Algebraic and Geometric Topology
%D 2024
%P 1809-1840
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.1809/
%R 10.2140/agt.2024.24.1809
%F 10_2140_agt_2024_24_1809
Incerti-Medici, Merlin. Möbius structures, quasimetrics and completeness. Algebraic and Geometric Topology, Tome 24 (2024) no. 4, pp. 1809-1840. doi: 10.2140/agt.2024.24.1809

Cité par Sources :