Steenrod problem and some graded Stanley–Reisner rings
Algebraic and Geometric Topology, Tome 24 (2024) no. 3, pp. 1725-1738

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

“What kind of ring can be represented as the singular cohomology ring of a space?” is a classic problem in algebraic topology, posed by Steenrod. We consider this problem when rings are the graded Stanley–Reisner rings, in other words the polynomial rings divided by an ideal generated by square-free monomials. We give a necessary and sufficient condition that a graded Stanley–Reisner ring is realizable when there is no pair of generators x,y such that |x| = |y| = 2n and xy≠0.

DOI : 10.2140/agt.2024.24.1725
Keywords: Steenrod problem, Stanley–Reisner ring, homotopy colimit, Steenrod algebra

Takeda, Masahiro 1

1 Faculty of Mathematics, Kyushu University, Fukuoka, Japan
@article{10_2140_agt_2024_24_1725,
     author = {Takeda, Masahiro},
     title = {Steenrod problem and some graded {Stanley{\textendash}Reisner} rings},
     journal = {Algebraic and Geometric Topology},
     pages = {1725--1738},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2024},
     doi = {10.2140/agt.2024.24.1725},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.1725/}
}
TY  - JOUR
AU  - Takeda, Masahiro
TI  - Steenrod problem and some graded Stanley–Reisner rings
JO  - Algebraic and Geometric Topology
PY  - 2024
SP  - 1725
EP  - 1738
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.1725/
DO  - 10.2140/agt.2024.24.1725
ID  - 10_2140_agt_2024_24_1725
ER  - 
%0 Journal Article
%A Takeda, Masahiro
%T Steenrod problem and some graded Stanley–Reisner rings
%J Algebraic and Geometric Topology
%D 2024
%P 1725-1738
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.1725/
%R 10.2140/agt.2024.24.1725
%F 10_2140_agt_2024_24_1725
Takeda, Masahiro. Steenrod problem and some graded Stanley–Reisner rings. Algebraic and Geometric Topology, Tome 24 (2024) no. 3, pp. 1725-1738. doi: 10.2140/agt.2024.24.1725

Cité par Sources :