Steenrod problem and some graded Stanley–Reisner rings
Algebraic and Geometric Topology, Tome 24 (2024) no. 3, pp. 1725-1738
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
“What kind of ring can be represented as the singular cohomology ring of a space?” is a classic problem in algebraic topology, posed by Steenrod. We consider this problem when rings are the graded Stanley–Reisner rings, in other words the polynomial rings divided by an ideal generated by square-free monomials. We give a necessary and sufficient condition that a graded Stanley–Reisner ring is realizable when there is no pair of generators x,y such that |x| = |y| = 2n and xy≠0.
Keywords:
Steenrod problem, Stanley–Reisner ring, homotopy colimit,
Steenrod algebra
Affiliations des auteurs :
Takeda, Masahiro 1
@article{10_2140_agt_2024_24_1725,
author = {Takeda, Masahiro},
title = {Steenrod problem and some graded {Stanley{\textendash}Reisner} rings},
journal = {Algebraic and Geometric Topology},
pages = {1725--1738},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {2024},
doi = {10.2140/agt.2024.24.1725},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.1725/}
}
TY - JOUR AU - Takeda, Masahiro TI - Steenrod problem and some graded Stanley–Reisner rings JO - Algebraic and Geometric Topology PY - 2024 SP - 1725 EP - 1738 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.1725/ DO - 10.2140/agt.2024.24.1725 ID - 10_2140_agt_2024_24_1725 ER -
Takeda, Masahiro. Steenrod problem and some graded Stanley–Reisner rings. Algebraic and Geometric Topology, Tome 24 (2024) no. 3, pp. 1725-1738. doi: 10.2140/agt.2024.24.1725
Cité par Sources :