Classical homological stability from the point of view of cells
Algebraic and Geometric Topology, Tome 24 (2024) no. 3, pp. 1691-1712

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We explain how to interpret the complexes arising in the “classical” homology stability argument (eg in the framework of Randal-Williams and Wahl) in terms of higher algebra, which leads to a new proof of homological stability in this setting. The key ingredient is a theorem of Damiolini on the contractibility of certain arc complexes. We also explain how to directly compare the connectivities of these complexes with that of the “splitting complexes” of Galatius, Kupers and Randal-Williams.

DOI : 10.2140/agt.2024.24.1691
Keywords: homological stability, $E_k$–algebras

Randal-Williams, Oscar 1

1 Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
@article{10_2140_agt_2024_24_1691,
     author = {Randal-Williams, Oscar},
     title = {Classical homological stability from the point of view of cells},
     journal = {Algebraic and Geometric Topology},
     pages = {1691--1712},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2024},
     doi = {10.2140/agt.2024.24.1691},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.1691/}
}
TY  - JOUR
AU  - Randal-Williams, Oscar
TI  - Classical homological stability from the point of view of cells
JO  - Algebraic and Geometric Topology
PY  - 2024
SP  - 1691
EP  - 1712
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.1691/
DO  - 10.2140/agt.2024.24.1691
ID  - 10_2140_agt_2024_24_1691
ER  - 
%0 Journal Article
%A Randal-Williams, Oscar
%T Classical homological stability from the point of view of cells
%J Algebraic and Geometric Topology
%D 2024
%P 1691-1712
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.1691/
%R 10.2140/agt.2024.24.1691
%F 10_2140_agt_2024_24_1691
Randal-Williams, Oscar. Classical homological stability from the point of view of cells. Algebraic and Geometric Topology, Tome 24 (2024) no. 3, pp. 1691-1712. doi: 10.2140/agt.2024.24.1691

Cité par Sources :