Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Fix a finite group G. We study Ω2SO ,G and Ω2U,G, the unitary and oriented bordism groups of smooth G–equivariant compact surfaces, respectively, and we calculate them explicitly. Their ranks are determined by the possible representations around fixed points, while their torsion subgroups are isomorphic to the direct sum of the Bogomolov multipliers of the Weyl groups of representatives of conjugacy classes of all subgroups of G. We present an alternative proof of the fact that surfaces with free actions which induce nontrivial elements in the Bogomolov multiplier of the group cannot equivariantly bound. This result permits us to show that the 2–dimensional SK –groups (Schneiden und Kleben, or “cut and paste”) of the classifying spaces of a finite group can be understood in terms of the bordism group of free equivariant surfaces modulo the ones that bound arbitrary actions.
Ángel, Andrés 1 ; Samperton, Eric 2 ; Segovia, Carlos 3 ; Uribe, Bernardo 4
@article{10_2140_agt_2024_24_1623,
author = {\'Angel, Andr\'es and Samperton, Eric and Segovia, Carlos and Uribe, Bernardo},
title = {Oriented and unitary equivariant bordism of surfaces},
journal = {Algebraic and Geometric Topology},
pages = {1623--1654},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {2024},
doi = {10.2140/agt.2024.24.1623},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.1623/}
}
TY - JOUR AU - Ángel, Andrés AU - Samperton, Eric AU - Segovia, Carlos AU - Uribe, Bernardo TI - Oriented and unitary equivariant bordism of surfaces JO - Algebraic and Geometric Topology PY - 2024 SP - 1623 EP - 1654 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.1623/ DO - 10.2140/agt.2024.24.1623 ID - 10_2140_agt_2024_24_1623 ER -
%0 Journal Article %A Ángel, Andrés %A Samperton, Eric %A Segovia, Carlos %A Uribe, Bernardo %T Oriented and unitary equivariant bordism of surfaces %J Algebraic and Geometric Topology %D 2024 %P 1623-1654 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.1623/ %R 10.2140/agt.2024.24.1623 %F 10_2140_agt_2024_24_1623
Ángel, Andrés; Samperton, Eric; Segovia, Carlos; Uribe, Bernardo. Oriented and unitary equivariant bordism of surfaces. Algebraic and Geometric Topology, Tome 24 (2024) no. 3, pp. 1623-1654. doi: 10.2140/agt.2024.24.1623
Cité par Sources :