Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We give new link detection results for knot and link Floer homology, inspired by recent work on Khovanov homology. We show that knot Floer homology detects T(2,4), T(2,6), T(3,3), L7n1 and the link T(2,2n) with the orientation of one component reversed. We show link Floer homology detects T(2,2n) and T(n,n), for all n. Additionally, we identify infinitely many pairs of links such that both links in the pair are each detected by link Floer homology but have the same Khovanov homology and knot Floer homology. Finally, we use some of our knot Floer detection results to give topological applications of annular Khovanov homology.
Binns, Fraser 1 ; Martin, Gage 2
@article{10_2140_agt_2024_24_159,
author = {Binns, Fraser and Martin, Gage},
title = {Knot {Floer} homology, link {Floer} homology and link detection},
journal = {Algebraic and Geometric Topology},
pages = {159--181},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {2024},
doi = {10.2140/agt.2024.24.159},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.159/}
}
TY - JOUR AU - Binns, Fraser AU - Martin, Gage TI - Knot Floer homology, link Floer homology and link detection JO - Algebraic and Geometric Topology PY - 2024 SP - 159 EP - 181 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.159/ DO - 10.2140/agt.2024.24.159 ID - 10_2140_agt_2024_24_159 ER -
%0 Journal Article %A Binns, Fraser %A Martin, Gage %T Knot Floer homology, link Floer homology and link detection %J Algebraic and Geometric Topology %D 2024 %P 159-181 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.159/ %R 10.2140/agt.2024.24.159 %F 10_2140_agt_2024_24_159
Binns, Fraser; Martin, Gage. Knot Floer homology, link Floer homology and link detection. Algebraic and Geometric Topology, Tome 24 (2024) no. 1, pp. 159-181. doi: 10.2140/agt.2024.24.159
Cité par Sources :