Cohomological and geometric invariants of simple complexes of groups
Algebraic and Geometric Topology, Tome 24 (2024) no. 2, pp. 1121-1155

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We investigate cohomological properties of fundamental groups of strictly developable simple complexes of groups X. We obtain a polyhedral complex equivariantly homotopy equivalent to X of the lowest possible dimension. As applications, we obtain a simple formula for proper cohomological dimension of CAT ⁡ (0) groups whose actions admit a strict fundamental domain; for any building of type (W,S) that admits a chamber transitive action by a discrete group, we give a realisation of the building of the lowest possible dimension equal to the virtual cohomological dimension of W; under general assumptions, we confirm a folklore conjecture on the equality of Bredon geometric and cohomological dimensions in dimension one; finally, we give a new family of counterexamples to the strong form of Brown’s conjecture on the equality of virtual cohomological dimension and Bredon cohomological dimension for proper actions.

DOI : 10.2140/agt.2024.24.1121
Keywords: complex of groups, classifying space, standard development, Coxeter system, building, virtual cohomological dimension, Bredon cohomological dimension

Petrosyan, Nansen 1 ; Prytuła, Tomasz 2

1 School of Mathematical Sciences, University of Southampton, Southampton, United Kingdom
2 Department Of Applied Mathematics And Computer Science, Technical University of Denmark, Lyngby, Denmark
@article{10_2140_agt_2024_24_1121,
     author = {Petrosyan, Nansen and Prytu{\l}a, Tomasz},
     title = {Cohomological and geometric invariants of simple complexes of groups},
     journal = {Algebraic and Geometric Topology},
     pages = {1121--1155},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2024},
     doi = {10.2140/agt.2024.24.1121},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.1121/}
}
TY  - JOUR
AU  - Petrosyan, Nansen
AU  - Prytuła, Tomasz
TI  - Cohomological and geometric invariants of simple complexes of groups
JO  - Algebraic and Geometric Topology
PY  - 2024
SP  - 1121
EP  - 1155
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.1121/
DO  - 10.2140/agt.2024.24.1121
ID  - 10_2140_agt_2024_24_1121
ER  - 
%0 Journal Article
%A Petrosyan, Nansen
%A Prytuła, Tomasz
%T Cohomological and geometric invariants of simple complexes of groups
%J Algebraic and Geometric Topology
%D 2024
%P 1121-1155
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.1121/
%R 10.2140/agt.2024.24.1121
%F 10_2140_agt_2024_24_1121
Petrosyan, Nansen; Prytuła, Tomasz. Cohomological and geometric invariants of simple complexes of groups. Algebraic and Geometric Topology, Tome 24 (2024) no. 2, pp. 1121-1155. doi: 10.2140/agt.2024.24.1121

Cité par Sources :