A short proof that the Lp–diameter of Diff 0(S,area) is infinite
Algebraic and Geometric Topology, Tome 23 (2023) no. 2, pp. 883-893

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give a short proof that the Lp–diameter of the group of area preserving diffeomorphisms isotopic to the identity of a compact surface is infinite.

DOI : 10.2140/agt.2023.23.883
Keywords: $L^p$ norm, diffeomorphism, Shnirelman conjecture, measure preserving diffeomorphism, braid group

Marcinkowski, Michał 1

1 Institute of Mathematics, University of Wrocław, Wrocław, Poland
@article{10_2140_agt_2023_23_883,
     author = {Marcinkowski, Micha{\l}},
     title = {A short proof that the {Lp{\textendash}diameter} of {Diff} {0(S,area)} is infinite},
     journal = {Algebraic and Geometric Topology},
     pages = {883--893},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2023},
     doi = {10.2140/agt.2023.23.883},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.883/}
}
TY  - JOUR
AU  - Marcinkowski, Michał
TI  - A short proof that the Lp–diameter of Diff 0(S,area) is infinite
JO  - Algebraic and Geometric Topology
PY  - 2023
SP  - 883
EP  - 893
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.883/
DO  - 10.2140/agt.2023.23.883
ID  - 10_2140_agt_2023_23_883
ER  - 
%0 Journal Article
%A Marcinkowski, Michał
%T A short proof that the Lp–diameter of Diff 0(S,area) is infinite
%J Algebraic and Geometric Topology
%D 2023
%P 883-893
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.883/
%R 10.2140/agt.2023.23.883
%F 10_2140_agt_2023_23_883
Marcinkowski, Michał. A short proof that the Lp–diameter of Diff 0(S,area) is infinite. Algebraic and Geometric Topology, Tome 23 (2023) no. 2, pp. 883-893. doi: 10.2140/agt.2023.23.883

Cité par Sources :