A short proof that the Lp–diameter of Diff 0(S,area) is infinite
Algebraic and Geometric Topology, Tome 23 (2023) no. 2, pp. 883-893
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We give a short proof that the Lp–diameter of the group of area preserving diffeomorphisms isotopic to the identity of a compact surface is infinite.
Keywords:
$L^p$ norm, diffeomorphism, Shnirelman conjecture, measure
preserving diffeomorphism, braid group
Affiliations des auteurs :
Marcinkowski, Michał 1
@article{10_2140_agt_2023_23_883,
author = {Marcinkowski, Micha{\l}},
title = {A short proof that the {Lp{\textendash}diameter} of {Diff} {0(S,area)} is infinite},
journal = {Algebraic and Geometric Topology},
pages = {883--893},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {2023},
doi = {10.2140/agt.2023.23.883},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.883/}
}
TY - JOUR AU - Marcinkowski, Michał TI - A short proof that the Lp–diameter of Diff 0(S,area) is infinite JO - Algebraic and Geometric Topology PY - 2023 SP - 883 EP - 893 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.883/ DO - 10.2140/agt.2023.23.883 ID - 10_2140_agt_2023_23_883 ER -
%0 Journal Article %A Marcinkowski, Michał %T A short proof that the Lp–diameter of Diff 0(S,area) is infinite %J Algebraic and Geometric Topology %D 2023 %P 883-893 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.883/ %R 10.2140/agt.2023.23.883 %F 10_2140_agt_2023_23_883
Marcinkowski, Michał. A short proof that the Lp–diameter of Diff 0(S,area) is infinite. Algebraic and Geometric Topology, Tome 23 (2023) no. 2, pp. 883-893. doi: 10.2140/agt.2023.23.883
Cité par Sources :