Realization of graded monomial ideal rings modulo torsion
Algebraic and Geometric Topology, Tome 23 (2023) no. 2, pp. 733-764

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let A be the quotient of a graded polynomial ring ℤ[x1,… ⁡,xm] ⊗ Λ[y1,… ⁡,yn] by an ideal generated by monomials with leading coefficients 1. We construct a space XA such that A is isomorphic to H∗(XA) modulo torsion elements.

DOI : 10.2140/agt.2023.23.733
Keywords: cohomology realization problem, polyhedral product

So, Tseleung 1 ; Stanley, Donald 2

1 Department of Mathematics, University of Western Ontario, London, ON, Canada
2 Department of Mathematics and Statistics, University of Regina, Regina, SK, Canada
@article{10_2140_agt_2023_23_733,
     author = {So, Tseleung and Stanley, Donald},
     title = {Realization of graded monomial ideal rings modulo torsion},
     journal = {Algebraic and Geometric Topology},
     pages = {733--764},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2023},
     doi = {10.2140/agt.2023.23.733},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.733/}
}
TY  - JOUR
AU  - So, Tseleung
AU  - Stanley, Donald
TI  - Realization of graded monomial ideal rings modulo torsion
JO  - Algebraic and Geometric Topology
PY  - 2023
SP  - 733
EP  - 764
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.733/
DO  - 10.2140/agt.2023.23.733
ID  - 10_2140_agt_2023_23_733
ER  - 
%0 Journal Article
%A So, Tseleung
%A Stanley, Donald
%T Realization of graded monomial ideal rings modulo torsion
%J Algebraic and Geometric Topology
%D 2023
%P 733-764
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.733/
%R 10.2140/agt.2023.23.733
%F 10_2140_agt_2023_23_733
So, Tseleung; Stanley, Donald. Realization of graded monomial ideal rings modulo torsion. Algebraic and Geometric Topology, Tome 23 (2023) no. 2, pp. 733-764. doi: 10.2140/agt.2023.23.733

Cité par Sources :